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ABSTRACT: The structural flexibility of organic semiconductors offers vast a search
space, and many potential candidates (donor and acceptor) for organic solar cells
(OSCs) are yet to be discovered. Machine learning is extensively used for material
discovery but performs poorly on extrapolation tasks with small training data sets.
Active learning techniques can guide experimentalists to extrapolate and find the most
promising D:A combination in a significantly small number of experiments. This study
uses an active learning technique with a predictive random forest model to iteratively
find the most optimal D:A combinations in the search space using various acquisition
functions. Active learning results with five different acquisition functions (MM, MEI,
MLI, MU, and UCB) are compared. Results reveal that acquisition functions that
combine exploitation and exploration (MEI, MLI, and UCB) perform far better than
purely exploiting (MM) and purely exploring (MU) acquisition functions. Interestingly,
the proposed model can overcome the bottleneck of extrapolating small training data
sets and find most promising D:A combinations in relatively fewer experiments.
KEYWORDS: organic solar cells, power conversion efficiency, donor:acceptor combinations, machine learning, active learning,
acquisition function

1. INTRODUCTION
Organic solar cells (OSCs) have shown remarkable progress in
the past decade and have gained much attention for being
lightweight, flexible, transparent, and low-cost alternatives to
conventional solar cell technology.1−6 Power conversion
efficiency (PCE) in the range of 18−19% for bulk
heterojunction (BHJ) based OSCs has already been
achieved7−10 with the emergence of nonfullerene small
molecule acceptor,11,12 particularly Y-series small molecules.13

By selecting suitable donors and acceptors with complemen-
tary absorption and matching frontier molecular orbitals
(FMOs), the PCE of OSCs can be enhanced by as much as
20%.2,14,15

Nowadays, machine learning (ML) is gaining much
attention, given its ability to accelerate productivity and
material discovery.16,17 ML models have been used in OSCs to
investigate novel active materials and the information
concealed in their chemical structures.18 Traditionally, trial-
and-error approaches based on intuition have remained the
primary way to design novel materials. It would take years to
explore a large chemical space of materials. However, with the
evolution of ML approaches, scientists can now explore
chemical space and its properties much more efficiently in
terms of time and money. Interest in ML is increasing in
material science-related fields because of the availability of
massive data sets, improved algorithms, and exponentially
increasing computing power. Various ML models are used for

predicting power conversion efficiency (PCE),19−36 short
circuit current density (JSC),

19,22,33,35 open-circuit voltage
(VOC),

19,22,33,35,37 fill factor (FF)19,35 nonradiative voltage
loss (ΔVNR),38 and frontier molecular orbitals (FMO).13,22
Studies on high-throughput screening by creating a large
search test space have been performed to discover potential
OSC candidates.36,39,40

Organic semiconducting materials have tremendous scope
for structural flexibility and rich design space, allowing a wide
range of optoelectronic characteristics and FMOs to be
tuned.41 Innumerable OSC materials can be synthesized
from derivatives of commonly used donor and acceptor
materials by altering their donor moiety, acceptor moiety, side
chain, core, and end-capping group.42 This leads to many
possible donor:acceptor (D:A) combinations for OSCs, and
studies have been performed earlier using ML on systemati-
cally created large search spaces.36,39,43 ML algorithms learn
structure−property relationships20,26 from training sets and
offer an accelerated method for virtual screening of materials. A
reliable supervised ML model, like regression, frequently needs
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a huge amount of training data, typically obtained from
expensive simulations or many experiments. If the available
training data set is large enough, then feature engineering is a
way to improve extrapolation capability of ML model. ML
models usually struggle with extrapolation tasks, and training
methods like leave-one-group-out (LOGO) cross-validation
have been proposed to improve extrapolation capability.44

However, extrapolation could be a problem with small training
data sets, as it is challenging to generate a training set that
precisely captures the chemical space of the large search
space.44 Provided with a large data set for training, variational
autoencoders (VAE)45 can be used to generate new active
materials for creating a large search space.
Moreover, only predictions do not make clear sense after

training the model on a small data set; associated uncertainties
are also required to get confidence in the associated
predictions.46 In this study, a distinct technique is adopted
that delivers accurate prediction and advises the selection of
the ideal candidate data points to test next. This strategy is
called active learning or sequential learning. Recently active
learning has received much attention in a wide range of
applications such as alloys,47 thermoelectrics,48 batteries,49,50

OLEDs,51 and OSCs52 other organic semiconducting materi-
als.53

Active learning builds a self-improving cycle that dynam-
ically evaluates fresh data in order to maximize its predictive
value. A major advantage of active learning over traditional ML
algorithms is that it creates accurate models that query
candidates to optimize the experimental design rather than
relying on predictions for all values. Therefore, active learning
is most beneficial in situations when data are few or
challenging to gather, which is frequently the case in materials
research. In fact, recent literature from a variety of areas has
highlighted successful examples of active learning in discovery
of new materials.17,51,53 An important thing to note is that the
buzzword “big data” refers to the search space, while the data
set available for training is usually small and sparse, like in all
other scientific domains. Thus, extrapolation is required, and
traditional ML techniques might struggle to achieve it.
For the virtual screening using ML methods, analysis based

on feature importance can help in identifying important
structural fragments for achieving high PCE. A large search
space is then constructed using these important structural
fragments, and then predictions are made on this search space
using the original model.36,54,55 Hence, all the structural
fragments involved in the search space are already available in
the training set, and virtual screening can be done effectively.
In our model, the training set consists of only a few materials
and is familiar with only a few structural fragments. Thus, an
effective active learning technique is required to find out the
most promising candidates by performing experiments
iteratively.
Along with the immensely wide chemical space of organic

semiconductors, many parameters need to be tuned while
considering any D:A combination. Some examples of tuning
parameters include the following: (1) proper alignment of
FMOs,56 (2) complementary absorption spectra of donor and
acceptors,57 (3) miscibility of donor and acceptor,58 (4) ratio
of donor and acceptor in the BHJ active layer,59 (5) thickness
of electron transport layer (ETL), hole transport layer (HTL),
and BHJ active layer,60 and (6) annealing temperatures of
ETL, HTL, and BHJ active layer.61 Therefore, optimization of
OSC with any specific D:A combination requires a lot of effort.

It is not experimentally feasible to explore all possible D:A
combinations manually in the lab since the process is expensive
and time-consuming.27 Thus, active learning techniques can
guide experimentalists iteratively toward the most promising
D:A combinations. The active learning model trained on the
initial training data set is used to get predictions and sample-
wise uncertainty estimates of the search space. Based on these
predictions and uncertainty estimates of the search space,
information acquisition functions select the most optimal
candidate. Acquisition functions select the candidates by
balancing exploitation and exploration. Exploration focuses
on areas with high uncertainty, while exploitation emphasizes
scenarios where the objective function is predicted to be
maximized.48 After each cycle, candidates selected by the
acquisition function are included in the training set, and a new
cycle is initiated in search of better candidates. With each
successive iteration, knowledge gained by the model increases,
prediction error decreases, and the model gets closer to
maximizing the target property. The active learning approach
used in this study is based on random Forest with Uncertainty
Estimates for Learning Sequentially (FUELS) framework48 by
Ling et al. Such a framework does not require dimensionality
reduction and is suitable for high-dimensional input parameter
space. On the other hand, an active learning technique such as
Bayesian optimization struggles with high dimensional data
and requires dimensionality reduction. In this study, after
dimensionality reduction using principal component analysis
(PCA), results reveal that 60 PCA components are required to
explain the complete variance as shown in Figure S1. Thus,
Bayesian optimization might not be as effective.48

This work builds an active learning model that starts with an
initial training set of D:A combinations and information
acquisition functions to query the most optimal D:A
combination from the search space. A data set of 200 unique
D:A combinations is manually selected from the literature. All
the descriptors for donors and acceptors for our training set are
calculated using the RDKit python package.62 In this work, we
compare five acquisition functions: (1) maximum mean
(MM), (2) maximum expected improvement (MEI), (3)
maximum likelihood improvement (MLI), (4) maximum
uncertainty (MU), and (5) upper confidence bound (UCB).
To study the effect of dimensionality reduction, a similar
pipeline is used for 60 pincipal components (PCs) and 40 PCs
training sets. Since the data set is small, different D:A
combinations explored by the acquisition functions are easily
visualizable using t-distributed stochastic neighbor embedding
(t-SNE) plot. The potential of active learning model is also
examined on a newly published data set63 of 1318 unique D:A
combinations. This work aims to find the most promising D:A
combination for achieving high PCE in a significantly small
number of experiments.

2. EXPERIMENTAL SECTION
2.1. Data Gathering. A data set of 200 unique D:A combination

is manually collected from the literature where all the donors are
polymer, and all the acceptors are nonfullerene small molecule
acceptors (NFSMAs). The number of unique donors is 70, and the
number of unique acceptors is 95. The complete data set is provided
in Table S1. Figure 1 represents the distribution of PCE in our data
set.
To create a training set for active learning model, chemical

structures of all donors and acceptors were drawn on ChemDraw
software to retrieve their SMILES (simplified molecular-input line-
entry system) strings.64 SMILES strings define a chemical structure in
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a machine-readable format (ASCII strings). To express some of the
information embedded in the chemical structures of donor and
acceptor materials in a machine-readable format, a diverse set of
molecular descriptors is required. Using SMILES strings, 208
molecular descriptors were calculated for each donor and acceptor
using RDKit python package.62 The RDKit package calculates
constitutional, connectivity, MOE-type, molecular property, and
topological descriptors.65 Examples of commonly used descriptors
are molecular weight, number of aliphatic or aromatic rings, number
of rotatable bonds, fraction of sp3 hybridized carbon atoms, and so on.
An abundance of associated features in the generated data set might

harm the model’s efficiency and accuracy. In order to avoid the curse
of dimensionality, feature selection is required to simplify models and
increase their interpretability as well as their training efficiency. This
study removed unnecessary features from the training set by dropping
constant features and features with high correlation coefficients.
2.2. Random Forest and Uncertainty Estimates. A random

forest model is a supervised learning algorithm in which a collection
of decision trees are generated from randomly selected subsets of
rows and descriptors. This process of random selection with
replacement is called “Bagging” or “Bootstrap Aggregation”.
Whenever a decision tree is created to its complete depth, it leads
to overfitting (high variance). However, multiple decision trees are
combined in a random forest, and variance gets reduced. Prediction of
the model is given by the mean of output from all decision trees.
Ling et al. used a random Forest with Uncertainty Estimates for

Learning Sequentially (FUELS) framework48 for uncertainty
quantification and showed its potential as a tool to discover new
materials. Based on their work, through the python library Lolopy
version (1.2.0), we were able to get predicted mean along with
sample-wise uncertainty estimates by evaluating observational
variance in the trees of the forest. An illustration for calculating
predicted mean and observational uncertainty is shown in Figure 2.
These sample-wise uncertainty estimates should be well-calibrated,

and a calibration check can be done by using normalized residual.
Normalized residual (rn) is defined as the difference between
predicted value {f(̂x)} and actual value{f(x)} divided by the

observational uncertainty {σ2(x)}. rn
f x f x

x
( ) ( )

( )2=
In our random forest model, the number of estimators (trees) was

set to 350, and all the trees were created to their complete depth so
that our model could capture most of the information from training
data. To visualize the uncertainty estimates calculated by the random
forest regressor by Lolopy, we splitted the data set into 90:10 train/
test ratio. Results are shown in Figure 3a, where blue points represent
training data, and red points represent predicted mean of test data
along with their observational uncertainty. Mean absolute error
(MAE) for the test set came out to be 1.67%. To check the
uncertainty estimate accuracy, 10-fold cross-validation is performed
on the complete data set to create a distribution of normalized
residual. Perfect calibration of uncertainty estimate would result in the

distribution of normalized residual to be a Gaussian with zero mean
and unit standard deviation. Our distribution for normalized residual
is shown in Figure 3b, which is roughly Gaussian with 0.0231 mean
and 1.087 standard deviation.
2.3. Acquisition Functions. Acquisition functions are the

mathematical expressions that are used to select candidates based
on predicted mean and sample-wise uncertainty estimates of the
search space. In this work, predicted mean and uncertainty estimates
are calculated using the Random Forest regressor by Lolopy version
1.2.0. Acquisition functions may use exploitation, exploration, or a
combination of both, depending on the use case. Exploiting functions
select the most similar candidates irrespective of their uncertainties,
and exploring functions choose the candidates with high uncertainty
to gain more knowledge. Based on the predicted PCE and their
associated uncertainties by random forest model, the acquisition
function will decide which D:A combination to reveal next. The idea
is to keep on iterating until the best candidate is found. To get a
better candidate in very few iterations (experiments), candidate with
the highest predicted mean and lowest uncertainty should be chosen.
However, if budget allows performing a number of iterations
(experiments), then the candidate with the highest uncertainty
should be chosen because it will provide the model with new insights.
Five established acquisition functions from the literature are used,
namely, maximum mean (MM), maximum expected improvement
(MEI), maximum likelihood improvement (MLI), maximum
uncertainty (MU), and upper confidence bound (UCB).
2.3.1. Maximum Mean (MM). This acquisition function simply

selects the candidate with the highest predicted mean value out of all
available candidates in the test data set. This function is greedy and
looks for similar candidates that may enhance the target variable. This
can be referred to as exploitation.

MM:

x E M xargmax ( )i* = [ ] (1)

where x* represents the selected candidate by the acquisition
function, xi represents the complete search space, E[M(xi)] is the
mean prediction of the model at point xi, and the “argmax” function
returns the index of maximum value along an axis.
2.3.2. Maximum Expected Improvement (MEI). MEI combines

exploitation and exploration to find the most optimal candidate. This
function uses the mean prediction and uncertainty estimates to draw
the probability distribution function (PDF) and cumulative
distribution function (CDF) at each test point to select the optimal
candidate.

Figure 1. Distribution of PCE in manually collected data set of 200
unique donor:acceptor combinations.

Figure 2. Calculation of predicted mean and sample-wise uncertainty
estimates (observation uncertainty or variance of trees) by random
forest regressor (Lolopy version 1.2.0). Predicted mean is the average
of prediction by all trees, and observational uncertainty is the variance
of prediction by all the trees.
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where, xbest is the current best candidate in the data set, σ2 is the
uncertainty (variance of the estimators), Φ′ is PDF, and Φ is
CDF.66,67

2.3.3. Maximum Likelihood Improvement (MLI). Based on

uncertainty, this function selects the candidate most likely to give a

target value better than the best candidate in the available train data

set. This function also gives combined attention to exploitation and

exploration.68

MLI:

x
E M x E M x

M x
argmax

( ) ( )
( )

i

i

best
2

* =
[ ] [ ]

[ ] (3)

2.3.4. Maximum Uncertainty (MU).MU selects the candidate with
the highest uncertainty, independent of their predicted mean. This
can lead to selection of candidates that are not optimal for study but
are optimal for capturing the search space.

MU:

x M xargmax ( )i
2* = [ ] (4)

2.3.5. Upper Confidence Bound (UCB). UCB selects the candidate
based on the maximum of predicted mean plus associated uncertainty
with a tuning parameter (K).68 For this study, we have selected tuning
factor = 1.

UCB:

x E M x K M xargmax ( ( ) ( ) )i i
2* = [ ] + [ ] (5)

Figure 3. (a) Visualization of uncertainty estimates in predicting PCE. Blue points represent training data; red points represent the predicted mean
of test data and their observational uncertainty. The black line represents linear fit. (b) Probability density of normalized residual to check
uncertainty estimate accuracy.

Figure 4. Schematic representation of active learning workflow. Random forest model is trained on the initial data set of D:A combinations to make
predictions on the search space along with sample-wise uncertainty estimates. The acquisition function selects the most optimal candidate for
higher PCE possibility based on mean predictions and sample-wise uncertainty estimates. Selected candidates are then fabricated in the lab and
characterized to get actual PCE. If the user is not satisfied with the result, then the selected candidate is added to the training set, and the whole
process is reinitiated. If the user is satisfied with the result, then this is considered a success.
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These five acquisition functions are compared to determine which
one performs best, i.e., finds the best candidate faster.
2.4. Active Learning Workflow. A lot of studies have been done

to predict PCE of organic solar cells by ML using the chemical
structure of donors and acceptors as descriptors.16,17,63 The most
straightforward ML approach is to create a small data set of D:A
combinations and their reported PCE and train a regression model to
predict PCE of unexplored D:A combinations, but the potential
problem with this approach is extrapolation since it is very challenging
to create a training set that can accurately capture the chemical space
of the entire search space (testing set). To extrapolate means to find a
candidate that is better than anything available in the training data set.
Machine learning is most suitable for large data sets, but scientific

data sets are usually small and sparse. In this work, we have chosen a
different approach that not only makes accurate prediction but also
guide the selection of the most optimal training data points. The size
of the initial training data set is only bound to the creation of a model
that can capture some of the relationships between our descriptors
and PCE. Figure 4 represents the active learning workflow for finding
the most promising D:A combination for high PCE. The workflow
starts with fitting a random forest model on a small existing D:A
combination data set with known PCE. The fitted model is then used
to get the search space’s mean predictions and sample-wise
uncertainty estimates. With these values, the acquisition function
identifies the most optimal D:A combination to achieve higher PCE.
The D:A combinations selected by the acquisition function are
fabricated in the lab and characterized to get actual PCE. If the user is
not satisfied with the results, then the selected candidate is added to
the training set, and the cycle is reinitiated. If the results are
satisfactory, then it is considered a success. Data increase with each
successive iteration (experiment). Hence, predictions will become
more accurate, and the research goal can be achieved much faster.
Aiming to achieve this goal, we want to show that we can dramatically
reduce the number of iterations (experiments) to reach our design
goal by using active learning techniques.

3. RESULT AND DISCUSSION
Since this work focuses on D:A combinations, an initial
training D:A combination set should be selected such that
none of their donor or acceptor is involved in a PCE of greater
than 10%. If this step is bypassed, then pure exploiting
acquisition functions such as MM would have an edge in
finding the best candidate in very few iterations.
To demonstrate active learning, random forest model is

trained on 10 randomly selected D:A combinations are given
in Table 1 to predict PCE along with sample-wise uncertainty
estimates for the test set (190 D:A combination). Based on
predicted PCE and sample-wise uncertainty estimates, the
acquisition function will decide which D:A combination to
reveal next. Figure 5 represents candidates selected by all five
acquisition functions in the first iteration of active learning to

find the candidate who is most likely to give a higher PCE.
Search space is represented in gray color, candidates selected
by the acquisition function are represented in different colors,
and maximum PCE in the training set is represented by black
dotted line (9.95%). Since random forest cannot extrapolate,
all the predicted mean values will lie between upper and lower
bounds of the initial training data set.
As seen in Figure 5, MM (pure exploitation) selected the

PTPDBDT:Br-ITIC combination with predicted mean PCE
(9.08%) and observational uncertainty (±0.91%). MM chose
this combination because of the highest predicted mean,
completely ignoring uncertainty. Since all the PCEs in the
training set are less than 10%, due to bootstrap aggregation,
none of the mean predictions can exceed 10% PCE. MU (pure
exploration) selected PTH37:i-IEICO combination with
predicted mean PCE (7.5%) and observational uncertainty
(±1.58%). MU chose this combination because of the highest
uncertainty and completely ignored the predicted mean. In
D:A combination chosen by MU, the difference between
reported PCE and predicted PCE is high, and the associated
uncertainty is also high. This again confirms good calibration
of uncertainty estimates. Surprisingly, acquisition functions
that combine both exploration and exploitation (MEI, MLI,
and UCB) outperform in the very first iteration and are able to
find out the candidate better than anything in the training set
(uncertainty is surpassing the dotted line (9.95%). MEI, MLI,
and UCB selected the same candidate in the first iteration
(PffBT2T-TT:O-IDTBR) with predicted mean PCE (9.06%)
and observational uncertainty (±1.3%). It is important to note
that general practice is to fabricate the cell suggested by the
acquisition function, but instead of going to the lab, we will
reveal the PCE as reported in the literature. If the results are
not satisfactory, then a second iteration is initiated. For
running the second iteration, the candidate selected by the
acquisition function in the first iteration is added to the
training data set. Now the training set has 11 D:A
combinations. Again, the model is fitted to predict the
remaining test set (189 D:A combination), and the acquisition
function selects the next suitable candidate. This loop goes on
for n number of iterations until the best candidate is found.

Table 1. Randomly Selected 10 D:A Combinations with
PCE Less Than 10%

s. no. donor acceptor PCE (%)

1 PffBT4T-2DT FBR 7.80
2 PffBT4T-2DT IDTBR 9.95
3 P3TEA SF-PDI2 9.50
4 BDT-ffBX-DT SFPDI 6.20
5 PMOT39 i-IEICO-2F 6.00
6 PTPDBDT F-ITIC 8.80
7 PTPDBDT Cl-ITIC 9.50
8 PffBT-T3 TPPz-PDI4 6.90
9 PDBT-T1 IDIC 9.20
10 PTFBDT-BZS IDIC 8.06

Figure 5. Illustration of first iteration results. Predictions of random
forest model trained on randomly selected data (Table 1) along with
sample-wise uncertainty estimates are shown in gray color. In the first
iteration, candidates selected by MM, MEI, MLI, MU, and UCB
acquisition function are colored, and the error bar represents
observational uncertainty. Black dotted line represents the maximum
PCE in the training set (9.95%). Acquisition functions that combine
both exploration and exploitation (MEI, MLI, and UCB) outperform
pure exploitation (MM) and pure exploration (MU). Interestingly,
MEI, MLI, and UCB selected the same candidate.
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Figure 6. Comparison of different acquisition functions. The initial training data set is common for all acquisition functions and is represented by
black dots. Gray dots represent search space, and colored dots represent candidates that have been identified by the acquisition function in the
search space. The first panel in the top left depicts a trend line that tracks the optimal candidate for individual acquisition function with increasing
experiments. Dotted line represents the highest PCE in the study search space (18.32%). When the acquisition function finds the candidate with
highest PCE, the trend line stops with a star and stops discovering further.

Figure 7. (a) t-SNE projection of 200 unique D:A combination having wide structural variety; color bar represents PCE (%). Cross marks
represent training data set, and star mark represents top candidate with PCE 18.32%. (b−f) The same t-SNE plot for different acquisition
functions; color bar represents the test order by which optimal candidates were identified by the corresponding acquisition function. Gray dots
represent the search space. Black dots represent the initial training data set, and the star mark represents the top candidate. Number of iterations by
each acquisition function are as follows: MM (40), MEI (24), MLI (17), MU (44), and UCB (30).
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Results for each acquisition function are shown in Figure 6.
Black dots represent the initial training data set, and it is same
for all acquisition functions. Gray dots represent the search
space, and colored dots represent candidates identified by
different acquisition functions in the search space. The top left
panel depicts a trend line that tracks the optimal candidate for
individual acquisition function with an increasing number of
experiments. When the acquisition function finds the candidate
with highest PCE, the trend line stops with a star and does not
discover further.
Results show that the acquisition functions that combine

exploitation and exploration (UCB, MLI, and MEI) con-
sistently outperform the pure exploiting (MM) and pure
exploring (MU) acquisition functions. The trajectory of all
acquisition functions for the results shown in Figure 6.
The in-depth optimization process described by the trend

line in the first panel of Figure 6 can be visualized using t-SNE
plot for D:A combination. t-SNE takes a high-dimensional data
set and reduces it to a two-dimensional graph that preserves a
lot of original information. The two dimensions of t-SNE plot
(components 1 and 2) reflect the difference in the candidates
in the feature space. Molecules with similar chemical structures
will be clustered together in this simplified two-dimensional
graph, while those with distinct chemical structures will spread
apart. In Figure 7, t-SNE plot is created for 200 unique D:A
combinations using morgan fingerprints by RDKit python
package. Morgan fingerprints69 (nbits = 2048 and radius = 2)
were calculated separately for donors and acceptors and
concatenated.
Figure 7a represents the t-SNE projection of 200 unique

D:A combination having wide structural variety, the color bar
represents PCE (%), cross marks represent the training data
set, and the star mark represents the best candidate with PCE
of 18.32%. Figure 7b−e represents the same t-SNE plot for
different acquisition functions, and the color bar represents the
test order by which optimal candidates were identified by the
corresponding acquisition function described in trend lines of
Figure 6. Figure 7b−e shows that gray dots represent the
search space, black dots represent the initial training data set,
and star marks represent the best candidate. Black dots
representing the initial training data set are spread apart,
indicating distinct chemical structures of donors and acceptors
in training set and are mentioned in Table S2 along with
chemical structures of donors and acceptors. For the MM
function in Figure 7b, each successive iteration exploits the
training set and identifies the chemically similar candidates for
the next iteration. MU function in Figure 7e tries to explore the

chemical space as much as possible to include high uncertainty
candidates so that model can learn much information. With
color bar in Figure 7e, exploration is also clearly visible with
test order. Both MM and MU functions cover almost the
whole structural space of D:A combinations concerning
exploitation and exploration indicated by their test orders.
MEI, MLI, and UCB functions in Figure 7c,d,f combine
exploitation and exploration to find the most optimal candidate
in the search space to reach the top candidate in the least
number of iterations. Thus, these three functions target the
specific regions of the chemical space where relatively higher
predictions of PCE are possible and select the most optimal
candidates to reach the top. Best results are obtained by MLI
in Figure 7d. For Figure 7b−e, D:A combinations associated
with the test order are mentioned in Tables S3−S7. Number of
iterations by each acquisition function to find the best
candidate are as follows: MM (40), MEI (24), MLI (17),
MU (44), and UCB (30).
In order to quantify the relative performance of acquisition

functions, we repeated this experiment 30 times with an initial
set of 10 randomly selected points. The results are shown in
Figure 8 below. Since these acquisition functions can easily get
trapped into local maxima (especially MM and MU) for a
considerable number of iterations, it is also important to note
how many iterations are required to surpass 15% PCE
threshold. The blue bars represent the average number of
experiments carried out by each acquisition function in order
to discover the best candidate in the search space, while the red
bars represent the average number of experiments carried out
by each acquisition function in order to surpass 15% PCE
threshold. Error bars represent standard error E x( )

30
= .

MLI performed best, followed by MEI, while MM and MU
performed worst for our study to find the best candidate. MEI
performed best to surpass the 15% PCE threshold, followed by
MLI. These results are also tabulated in Table 2.
The model’s performance is also studied for different

descriptors sets (RDKit, Mordred,70 and mix of both), and
the effect of dimensionality reduction is also studied by using

Figure 8. Blue bars represent the average number of experiments carried out by each acquisition function to discover the best candidate in the
search space, while the red bars represent the average number of experiments carried out by each acquisition function to surpass 15% PCE
threshold. Error bars represent standard error E x( )

30
= . MLI performed best, followed by MEI, while MM and MU performed worst for our

study.

Table 2. Average Number of Experiments and Standard
Error over 30 Experiments for All Acquisition Functions

MM MEI MLI MU UCB

to find best
candidate

34 ± 2 24 ± 2 20 ± 2 44 ± 4 29 ± 3

to surpass 15%
PCE

22 ± 2 12 ± 1 14 ± 1 23 ± 1 20 ± 2
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60 and 40 PCs. Results are shown in Figures S2−S4. Rdkit
descriptors perform comparatively well, and the model is
computationally less expensive because of fewer descriptors.
RDKit descriptors and mix descriptors performed well without
dimensionality reduction by using MEI, MLI, and UCB
acquisition functions. For Mordred descriptors, dimensionality
reductions gave better results. Moreover, we have compared
our results with Bayesian optimization (using Gaussian process
regressor as surrogate model with expected improvement (EI)
acquisition function) and found that random forest as a
surrogate model performs better for our study. Results for GPR
as surrogate model are shown in Figure S5. On the other hand,
GPR with EI acquisition function gave highly mixed results,
and the best results were achieved by mix of RDKIT and
Mordred descriptors.
To prove the potential of our model, we applied an end-to-

end model to a newly published data set with 1318 unique D:A
combinations,63 and their distribution of PCE is shown in
Figure S6. We applied the same strategy for selecting the
training set (randomly choosing 10 D:A combinations such
that none of the donors or acceptors are involved in a PCE of

greater than 10%). Using the same restrictions as earlier initial
training set is chosen randomly and is shown in Table S8. In
randomly selected initial data set for training, 6 out of 10
values have PCE smaller than 2%, making it a very rough
training set to check the potential of our active learning model.
Figure S7 represents first iteration selections by the acquisition
functions. In this study as well, all the predicted mean values in
the first iteration will lie between upper and lower bound of
initial training set, and cannot exceed 6.5% (highest PCE for
the training set). Acquisition functions that combine
exploitation and exploration (MEI, MLI, and UCB) outper-
form pure exploitation (MM) and pure exploration (MU).
MEI, MLI, and UCB select the candidate whose uncertainty
shows the potential to surpass the PCE of the current best
candidate in the training set.
Results for each acquisition function with a trend line are

shown in Figure 9. Number of iterations by each acquisition
function to find the best candidate are as follows: MEI (123),
MLI (60), and UCB (116), while MM and MU were not able
to find the best candidate within the 200 iteration budget.

Figure 9. Comparison of different acquisition functions for 1318 data sets. Initial training data sets are common for all acquisition functions and are
represented by black dots. Gray dots represent search space, and colored dots represent candidates that have been identified by the acquisition
function in the search space. The first panel depicts a trend line that tracks the optimal candidate for individual acquisition function with an
increasing number of experiments. When the acquisition function finds the candidate with the highest PCE, trend line stops with a star and stops
discovering further.

Figure 10. Blue bars represent the average number of experiments carried out by each acquisition function to discover the best candidate in the
search space, while the red bars represent the average number of experiments carried out by each acquisition function to surpass a 15% PCE
threshold. Since MM and MU cannot find the best candidate within 200 iteration budget, their results are not displayed. Error bars represent
standard error E x( )

30
= . MLI performed best, followed by MEI, while MM and MU performed worst in our study.
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Since the acquisition function is more likely to get trapped in
local maxima for many iterations in a larger data set, we have
compared iterations to get the best candidate with iterations to
surpass the 15% PCE mark. For the 1318 data sets, relative
performance of acquisition function is quantified by repeating
the experiment 30 times, and the results are shown in Figure
10 below. This time model ran for 200 iterations, and
acquisition function that involves both exploitation and
exploration (MEI, MLI, and UCB) outperforms solely
exploiting (MM) and solely exploring (MU). Due to a bigger
search space this time, MM and MU could not find the best
candidate within the 200 iteration budget. This proves that a
simple strategy of pure exploitation or pure exploration cannot
find promising candidates within a few experiment budget for
such a use case. These results are also tabulated in Table 3.

4. CONCLUSION
Active learning technique based on random forest with
uncertainty estimates is used to find the most optimal D:A
combination in the search space in the least possible iterations.
This work demonstrates how active learning workflow can be
used at the lab scale to find the most promising D:A
combination in the fewest possible iterations (experiments). A
data set of manually collected 200 unique D:A combinations is
used along with their corresponding PCE. Since the whole
purpose of active learning is to explore the vast search space,
simply accessible descriptors (RDKit descriptors) are used.
Active learning workflow starts with randomly chosen D:A
combination such that none of the donors or acceptors is
involved in PCE greater than 10%. Five acquisition functions
(MM, MEI, MLI, MU, and UCB) are compared using a trend
line for finding the best candidate in the search space. From
the comparison of acquisition functions, results reveal that the
best performing acquisition function combines both exploita-
tion and exploration (MEI, MLI, and UCB), while purely
exploiting (MM) and purely exploring (MU) functions
perform worst. A t-SNE plot is used to represent how different
acquisition function trend line traces the chemical search space
of D:A combinations using exploitation and exploration.
Performance of each acquisition function is quantified by
running the experiment 30 times with the randomly selected
initial training set, and the mean value is calculated along with
the standard error. MLI (20 iterations) performs best, followed
by MLI (24 iterations). The number of iterations taken by
different acquisition functions to surpass 15% PCE threshold is
also studied as acquisition functions are likely to get stuck into
a local maxima for a considerable number of iterations. For
surpassing the 15% PCE threshold, MEI performed best (12
iterations), followed by MLI (14 iterations). After getting
satisfactory results, the model potential is examined with a
recently published data set of 1318 unique D:A combinations,

and comparable results were achieved. This proves the
potential of our model for lab-based research with several
tuning parameters. For applications of ML in OSCs, if the
target variable is very complex and ML algorithms do not
perform well on structural descriptors, then DFT calculated
descriptors (FMO, band gap, etc.) can provide much more
insight into ML algorithms and better results could be
achieved. This active learning workflow can be used to
iteratively guide experimentalists in finding most promising
D:A combinations given a large search space.
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