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ABSTRACT: Organic solar cells (OSCs) have emerged as a promising

. Moleculargraph
technology for renewable energy generation, and researchers are constantly

exploring ways to improve their efficiency. For prediction of photovoltaic (

properties in OSCs, many machine learning models have been used in the \]

past. All the models are used with fixed molecular descriptors and molecular >+ o
fingerprints as input for power conversion efficiency (PCE) prediction. TP workflon for
Recently, the graph neural network (GNN), which can model graph oenerating feature vector

Atom features

structures of the molecule, has received increasing attention as a method
that could potentially overcome the limitations of fixed descriptors by
learning the task-specific rep'resentations using gra}ph convolutions. In this L .'“:"‘-"" EE - -“"‘L“'”’E
study, we have used the directed message passing neural network (D-

MPNN), an emerging type of GNN for predicting PCE of organic solar I_'I'““"-"‘f’i’“”ﬁ' -
cells, and the results are compared for the same train and test set with fixed

descriptors and fingerprints. The excellent performance demonstrated by

the D-MPNN model in this investigation highlights its potential for predicting PCE, surpassing the limitations of conventional fixed
descriptors.

X,

Feature vector of the

KEYWORDS: organic solar cells, machine learning, directed message passing neural network, power conversion efficiency,
donor:acceptor combinations

1. INTRODUCTION machine learning algorithms and the continuous advancement
of computational power are helping researchers with materials
design, discovery, and optimization. This cutting-edge
approach has the potential to revolutionize the material
discovery process and bring us one step closer to unlocking the
full potential of ML in the field of OSCs.

In the field of OSCs, a variety of microscopic property
inputs have been explored as part of ML investigations. Such
properties, including charge carrier mobility, optical bandgap,
and electron—hole binding energy, offer a more comprehensive
and accurate assessment of organic materials.'”** Although
they provide more realistic measures for organic materials, they
are computationally expensive. Traditional fixed representa-
tions like molecular descriptors and fingerprints have been
used for traditional molecular property prediction.”’ These
fixed descriptors and fingerprints are calculated using open-
source libraries such as RDKit*® and Mordred®” using

Organic solar cells (OSCs) have experienced significant
advancements in recent years, attracting attention as light-
weight, flexible, transparent, and cost-effective alternatives to
conventional solar cell technology.'™> A power conversion
efficiency (PCE) of 18—19%°~"" has already been achieved for
bulk heterojunction-based binary or ternary OSCs through the
utilization of non-fullerene small molecule acceptors, specifi-
cally, Y-series molecules, and the PCE of tandem OSCs
exceeds 20%."”

The integration of ML models into the field of OSCs has
opened up new avenues for exploring the vast chemical space
with greater efficiency and cost-effectiveness.””™'> With the
rapid advancement of ML techniques, scientists are now
empowered to delve deeper into the properties of chemical
systems, taking advantage of the abundance of data, improved
algorithms, and exponential increases in computational
power.16 In the field of OSCs, various ML models have been
used for predicting key performance metrics such as PCE,"”~** Received: June S, 2023
short circuit current density (Jsc), open-circuit voltage Accepted: July 12, 2023
(Voc),”?¥*%** fill factor,”>*° non-radiative voltage loss
(AVyg),” and frontier molecular orbitals (FMO).***" High-
throughput screening has also become a valuable tool for
identifying promising OSC candidates. The rapid progress of
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Figure 1. Input data preparation for ML studies in organic solar cells.
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simplified molecular input line entry system (SMILES)
strings38 and a machine-readable ASCII string. A molecular
descriptor is a machine-readable representation of the
information contained within a molecule, which can be
classified into zero-dimensional, one-dimensional, two-dimen-
sional, and three-dimensional descriptors based on the level of
inferences about the molecular topology and chemistry. On the
other hand, a molecular fingerprint is a binary representation of
a molecule’s known structural property, which can also be used
to compare the structural similarity of two molecules by
counting the number of matching bits.

The use of ML models for OSCs can lead to significant
advancements in the material discovery process. By optimizing
materials properties, researchers can improve the performance
of OSCs and potentially unlock their full potential. In addition,
ML models can aid in the development of new OSC materials,
which can further reduce the cost of solar energy generation.
With the integration of ML techniques, the process of
designing and testing new materials can become more efficient
and cost-effective.

2. EXPERIMENTAL SECTION

2.1. Message Passing Neural Network. Recently, the potential
of graph neural networks (GNNs) in modeling the graph structures of
molecules has gained considerable interest.”” The method offers a
promising solution to the restrictions of fixed descriptors, as it can
learn task-specific representations using graph convolutions. GNNs
have become a significant class of models for quantitative structure—
property relationship research due to their ability to model graph
structures. Among the various GNN architectures under investigation,
message passing neural networks (MPNNs) represent a commonly
used framework. MPNNs were originally introduced by Gilmer et
al.** as a generalization for the main GNNi.

In MPNN, molecular representation is built from scratch to better
fit the dataset. The basic idea behind MPNNSs is to encode the atomic
and bonding information for a given chemical structure as a graph
where the nodes in the network represent atoms in a molecule, and
the edges represent chemical bonds between atoms.” MPNN begins
by featuring the atoms of each molecule and atoms essentially pass
messages to each other in order to update each other with relevant
information.”’ The MPNN algorithm is a two-part process, with

“message passing phase” and the “readout phase”, respectively. During
the message passing phase, the attributes of the atoms and bonds are
circulated a specified number of times to create a task-specific vector
of the molecule. This representation is then utilized in the readout
phase, where the molecular properties are predicted with accuracy.
The “depth” parameter represents the extent of the reach of each
node and how far it can “observe”. One of the key advantages of
MPNNES is that they are able to effectively capture both local and
long-range interactions in a chemical structure. With this ability,
MPNN can learn complex patterns within the active material chemical
structure that contributes to higher PCE. MPNN accurately models
the complex dependencies between different molecule parts, which is
important for many chemical prediction tasks. In addition, MPNNs
are able to handle molecules of arbitrary size and complexity, making
them a powerful tool for working with large and diverse chemical
datasets. Moreover, MPNN learns to extract features and make
predictions directly from the raw input (SMILES) without manual
feature engineering, thus saving time and effort in the modeling
process.

2.2. Directed Message Passing Neural Network. In this study,
we have used the directed MPNN (D-MPNN) to predict the
efficiency of OSCs using the open-source Chemprop python
package.” To the best of our knowledge, this is the first work to
apply message passing on molecule graphs for predicting PCE in
OSCs. In D-MPNN, the message is passed along edges (bonds)
rather than nodes (atoms). In traditional MPNN algorithms,
messages are passed along atoms, which can lead to totters,” as the
message passing process can get stuck in a cycle of exchanging
information between atoms. D-MPNN overcomes this issue by
passing messages along bonds instead of atoms, ensuring that the
message passing process converges to a stable solution. This method
ensures that the message passing process converges to a stable
solution, leading to more accurate predictions. D-MPNN has shown
to be effective in handling complex molecular structures and
predicting various chemical properties. This work aims to investigate
the performance of D-MPNN for predicting the efficiency of OSCs
and compare it with other traditional random forest (RF), XGBoost,
and ANN models with fixed descriptors and fingerprints. Figure 1
represents the input data preparation workflow for ML studies in
OSCs.

2.3. Workflow of D-MPNN. Yang et al.** developed an open-
source python package Chemprop for implementing D-MPNN
models. The package provides a powerful and efficient solution for
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molecular property prediction tasks and has been widely used in drug
discovery"' and materials science.** The D-MPNN model represents
a graph with directional edges. Each connection between atoms v and
w is depicted by two directional bonds e,, and e,. To convert
SMILES strings to molecular graphs and compute atom features (x,)
and bond features (e,,,), Chemprop utilizes the open-source RDKit
package. Lists of atom and bond features used by Chemprop are given
in Tables 1 and 2.

Table 1. List of Atom Features

atom features description size

atom type type of atom (e.g, C, N, O), by atomic number 100
# bonds number of bonds the atom is involved in 6
formal charge  integer electronic charge assigned to atoms S
chirality unspecified, tetrahedral CW/CCW, or other 4
# Hs number of bonded hydrogen atoms S
hybridization sp, sp% sp’, sp°d, or sp>d” N
aromaticity whether this atom is part of an aromatic system 1
atomic mass mass of the atom divided by 100 1
Table 2. List of Bond Features
bond feature description size
bond type single, double, triple, or aromatic 4
conjugated whether the bond is conjugated 1
in ring whether the bond is part of a ring 1
stereo none, any, E/Z or cis/trans 6

Before the message passing process begins, we initialize the edge
hidden states by hy,, using eq 1. This equation concatenates the atom
and bond features and passes them through a learned matrix W; using
the rectified linear unit (RELU) activation function. This initializes
the edge hidden states, which will be updated during the message
passing process. In eq 1, 7 represents the RELU activation function,
W, is a learned matrix, and cat(x,,e,,,) represents the concatenation of
atom features x, and bond features e,y

hoy = t(Weat(x,, e,,)) (1)

The first step of message passing involves calculating the messages
from atom v to atom w. This is done by summing all hidden states for
the incoming bonds to v, excluding the one originating from w, as
described by m'} ! in eq 2. This step captures the information about

the neighboring atoms of each atom and their relationships.

mgt= Y R,
ke (N()\w} ()

Next, a new hidden message for depth 1 is created by adding the
initial hidden state and the product of the learned matrix W, and the
message, as specified by k%) ! in eq 3. This step updates the hidden
message with information about the neighboring atoms and their
relationships and creates a new hidden message for the next depth of
message passing.

hoe! = t(hy, + Wymet") €)

W

After messages have been passed for a specified depth, the hidden
states are summed up to create a final message for each atom, as
described by m, in eq 4. This step aggregates the information from all
the neighboring atoms and their relationships into a final message for
each atom.

mV = Z h\If;\l
wEN(v) (4)

The hidden state for each atom (h,) is then calculated by
concatenation of initial atom features and message vector using eq S.

h, = e(Weat(x,, m,)) )

Finally, a molecule feature vector is generated by aggregating
hidden states for each atom (h,) with eq 6. This step summarizes the
information from all the atoms in the molecule into a single molecule
feature vector, which can be used for property prediction.

h= Y h,

vEN(v) (6)

In readout phase, a fully connected feed-forward neural network is
then used to make property predictions. The D-MPNN model is
trained using NVIDIA Tesla V100 GPU.

3. RESULTS AND DISCUSSION

3.1. Comparison of the Fixed Descriptor Model with
the D-MPNN. In this study, we have compared the D-MPNN
method with RF, XGBoost, and ANN models using fixed
descriptors (RDKit*® and Mordred’”) and fixed fingerprints
(Morgan®). The dataset of 1318 D:A (polymer donor: non-
fullerene acceptor) combinations published by Miyake and
Saeki*® is used to compare the models, and the distribution of
PCE is given in Figure 2. RF is a supervised learning algorithm,

Count

10 15
PCE(%)

N

Figure 2. PCE distribution for 1318 unique D:A combinations.*®

in which a collection of decision trees are generated from
randomly collected subsets of rows and columns. This process
is often referred to as “bagging” or “bootstrap aggregation”.
Workflow comparison for RF model with fixed descriptors and
D-MPNN model is represented in Figure 3.

3.2. Hyperparameter Optimization and Ensembling.
For the RF model, five hyperparameters (n_estimators,
max_features, min samples split, min samples leaf, and
bootstrap) are optimized using Gridsearchcv.”” The perform-
ance of D-MPNNS, similar to many neural networks, is heavily
influenced by the configurations of the model hyperparameters
such as the hidden size of the network layers. To achieve
optimal performance, Chemprop employs hyperparameter
optimization using Bayesian Optimization*® with hyperopt
python package.*” The optimization specifically focuses on the
model’s depth (number of message-passing steps in MPNN),
hidden size (vector size used in MPNN), ffin_num_layer (the
number of layers in the feed-forward neural network), and
dropout (dropout probability). Details of best selected
hyperparameters are provided in Tables 3 and 4. To further
improve the performance of models, ensembling is used where
predictions from multiple independently trained D-MPNN
models are averaged to give more accurate prediction.’’
Multiple models used for ensembling have the same
architecture and hyperparameters but are initialized with
random weights.

3.3. Results. For a fair comparison with the D-MPNN, the
RF model with optimized parameters is used for predicting
PCE using fixed descriptors (RDKit descriptors, Mordred
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Figure 3. Workflow of models compared in this study. (a) RF model is used with fixed descriptors (RDKit and Mordred) and fixed fingerprint
(Morgan). (b) D-MPNN model is used with Chemprop python package.

Table 3. RF Hyperparameters Optimized Using
Gridsearchcv for Fixed Descriptors

RDKit Mordred Morgan
hyperparameters descriptors descriptors fingerprints
n_estimators 100 300 200
max_features auto sqrt auto
min_sample split 2 10 S
min_sample leaf 2 1 1
bootstrap true false true

descriptors, and Morgan fingerprints). The RF model with
RDKit descriptors performs best with a correlation coefficient
(r = 0.84), followed by the Morgan fingerprint (r = 0.83) and
then followed by Mordred descriptor (r = 0.82). In order to
conduct a comprehensive comparison, we also evaluated fixed
descriptor sets using XGBoost and ANN models. The
XGBoost model demonstrated favorable performance when
applied to RDKit descriptors (correlation coefficient, r = 0.83)
and Mordred descriptors (r = 0.82). However, its performance
decreased when applied to Morgan fingerprint descriptors (r =
0.77). Likewise, the ANN model yielded promising results with
RDKit descriptors (r = 0.81) and Mordred descriptors (r =
0.84), but its performance declined when using Morgan
fingerprint descriptors (r = 0.79). For fixed descriptors set, the
RF model performs best.

An 80:10:10 train:validation:test split is used for the D-
MPNN model, and training set and test set are kept the same

for the RF model. The D-MPNN model is trained with default
hyperparameters, and (r = 0.822) is achieved. By performing
cross-validation along with ensembling, r is improved to 0.84.
The model gave the best performance with optimized
hyperparameters (r = 0.86). An optimized depth of S can be
attributed to superior performance of this model. We also tried
to include the RDKit descriptors in the D-MPNN model by
including RDKit descriptors with the molecule vector
generated in the message passing phase, and the model
performance remains the same (r = 0.86). This indicates that
molecule vectors generated in the message passing phase of the
D-MPNN model contains all the information, and no extra
information is added up by RDKit descriptors. Scatter plots for
reported vs predicted PCE are given in Figure 4a—f along with
RMSE of all the models in Figure 4g. This comparison
highlights the potential benefits of using D-MPNN models for
predicting PCE of OSCs, as well as the importance of
optimizing hyperparameters to achieve the best possible
performance.

4. CONCLUSIONS

The D-MPNN model is used for the prediction of PCE in
OSCs, and the results are compared with fixed descriptor/
fingerprint-based RF, XGBoost, and ANN models. In
summary, the ability of our model to surpass established
baselines highlights its superiority and paves the way for its
widespread adoption in research. This study highlights the

Table 4. D-MPNN Hyperparameters Optimized Using Hyperopt Python Package

hyperparameters D-MPNN (default)
depth 3

dropout 0
fin_num_layer 2
hidden_size 300
num_folds 1
ensemble_size 1

D-MPNN (optimized)

D-MPNN (optimized) + RDKit descriptors

S N
0.05 0.05
2 2
2200 2200
S N

3 3
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Figure 4. Results of models. (a) RF model with RDKit descriptors, (b) RF model with Mordred descriptors, (c) RF model with Morgan
fingerprints, (d) D-MPNN model with default hyperparameters, (e) D-MPNN model with optimized hyperparameters, (f) D-MPNN model with
optimized parameters and RDKit descriptors, and (g) RMSE of models (a—f).

promise of GNN, particularly D-MPNN, in PCE prediction of
OSCs, and may lead to further developments in this area. The
use of learned representations opens up new avenues for
exploring the complex relationship between molecular
structures and properties and has the potential to revolutionize
the way property predictions are made. Hyperparameter
optimization is performed for all the models to find the
optimal hyperparameters. In fixed descriptor/fingerprint-based
models, RDKit descriptors performed best (r = 0.84), followed
by Morgan fingerprints (r = 0.83) and Mordred descriptors (r
= 0.82). For the D-MPNN model, with default hyper-
parameters, (r = 0.85) is achieved, which is further improved
to (r = 0.86) by performing hyperparameter optimization.
With its impressive performance and clear practical applica-
tions, our model is poised to play a key role in the future of
molecular property prediction. This advancement in machine
learning-based molecular representations is a significant step
forward in our understanding of molecular structures and
properties.
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