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Opportunities and challenges for machine learning
to select combination of donor and acceptor
materials for efficient organic solar cells†

Prateek Malhotra, a Kanupriya Khandelwal, a Subhayan Biswas,a

Fang-Chung Chen bc and Ganesh D. Sharma *ad

Organic solar cells (OSCs) have witnessed significant improvement in power conversion efficiency (PCE)

in the last decade. The structural flexibility of organic semiconductors provides vast search space

for potential candidates of OSCs, but discovering new materials from search space with traditional

approaches such as DFT is computationally expensive and time-consuming. Machine learning (ML) is

extensively used in OSCs to accelerate productivity and materials discovery. ML is gaining more

attention due to the availability of large datasets, improved algorithms, and exponentially growing

computational power. In this review, current progress, opportunity, and challenges for ML in OSCs have

been identified. Given the rapid advances in this field, impactful techniques that have been useful in

extracting meaningful insights are discussed. Finally, we elaborate upon the bottlenecks of the ML

workflow with respect to data size, model interpretability, and extrapolation.

1. Introduction
Organic solar cells (OSCs) have come a long way in their quest
to become a viable alternative to more expensive conventional
solar cell technology.1,2 Being flexible, lightweight, eco-friendly,
and semi-transparent, OSCs hold promising potential for
various applications.3–8 With the advent of non-fullerene
small molecule acceptors (NFSMAs),9–13 especially Y-series
NFSMAs,14–16 bulk heterojunction (BHJ) based OSCs have already
reached power conversion efficiencies (PCEs) in the range of 18–
19% for single junction binary and ternary systems17–23 and are
exceeding 20% for tandem configuration.24 Sharp absorption
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onset, bandgap tunability, high absorption, and low energy
losses are some of the benefits of NFSMAs over fullerene
derivatives that have propelled them to the forefront of techno-
logical advancement and potential commercialization of OSCs at
low cost.25–28

The most efficient OSCs are based on the concept of BHJ, in
which the active layer is sandwiched between the anode and the
cathode. The hole transport layer (HTL) is inserted between the
BHJ layer and the anode, and the electron transport layer (ETL)
is inserted between the BHJ layer and the cathode to enhance
the charge collection. The BHJ active layer is a mix of donor
(p-type organic semiconductor) and acceptor (n-type organic

semiconductor), which provides an appropriate phase separa-
tion for efficient exciton dissociation into free charge carriers
and interpenetrating network pathways for charge transport
towards respective electrodes. In general, the energy conversion
in OSCs based on the bulk heterojunction active layer is
accomplished by the following main consecutive steps: (i)
absorption of photons by the BHJ active layer and exciton
generation, (ii) exciton diffusion to D/A interfaces, (iii) exciton
dissociation, (iv) transport of electrons and holes towards the
cathode and anode, and (v) charge extraction. The step
(vi) charge recombination, would lead to a decrease in device
efficiency; these processes are presented in Fig. 1. Considering

Fig. 1 Photocurrent generation in BHJ-OSCs. (1) Exciton generation,
(2) exciton diffusion, (3) exciton dissociation, (4) charge transportation,
(5) charge extraction, and (6) charge recombination.
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all the processes, the PCE of the OSC depends on many
properties of the organic semiconductors such as the optical
absorption profile and molar extinction coefficient, charge
carrier mobility, frontier energy levels of donor and acceptor,
and electron–hole (exciton) binding energy (Ebind) and it is very
important to construct more precise models using all appro-
priate and easily available descriptors.

Although OSCs have attained PCEs in the range of 19–20%,
one faces new challenges in exploring numerous possible
material combinations together with weight ratios between
donor and acceptor and processing conditions. Once a
market-competitive PCE is realized in the laboratory, the next
step must be transferring this technology for manufacturing,
which is challenging and time-consuming.29,30 This demands a
new research method that can rapidly explore enormous parameter
space, ideally via industry-relevant methods. Many experimental
methods, including screen printing, doctor blade, and slot-die,
have been explored to cover the enormous composition space.31–34

Most efficient BHJ-OSCs employ the A–D–A structured
NFSMAs as the acceptor and D–A copolymers as the donor.
The structural diversity of these materials is of significant
interest for materials scientists; however, it is not possible to
completely survey the huge molecular space. Quantum
chemical calculations and molecular dynamics simulations
can provide an approximate evaluation of the optical and
electrochemical properties of new materials;35–37 however, the
complex relationship between the structure and these proper-
ties of materials used for OSCs has hindered the efficient
assessment of materials.

Machine learning (ML) is a subfield of rapidly developing
artificial intelligence (AI) technology that seeks to create pro-
grams capable of learning from large data sets by employing
various algorithms and statistical techniques. Such programs
can then be used to do things like explore hidden patterns in
data, build predictive models, and create guidelines for future
research. In recent years, many publications on the application
of ML techniques in materials science have been published, as
these techniques have been widely used in material research to
determine the properties and functions of existing materials or
to discover new materials with more desirable functions. ML is
getting a lot of attention these days because of its potential to
boost output and aid in discovering new materials.38 ML has
been used extensively in fields including property prediction
and material discovery in the field of OSCs.39–43 The number of
publications detailing the use of machine learning for the
analysis or screening of data obtained experimentally or compu-
tationally has also expanded dramatically over the past couple of
years. Since non-fullerene small molecule acceptors were dis-
covered recently, earlier ML studies were performed entirely on
polymer donors, and the acceptor was fullerene. The majority of
datasets now being used for the study include polymer donors
and small molecule non-fullerene acceptors. With an increase in
data size, model performance is also improved.

Many high-performance active materials for OSCs are yet
to be discovered, and material synthesis followed by device
fabrication is expensive and time-consuming. We want to under-

stand the functions that link material properties with structure.
At the device fabrication stage, there are a number of tunable
parameters such as the D : A ratio,44 alignment between frontier
molecular orbitals (FMOs),45 miscibility,46 film processing
(spin-casting speed),47 calcination temperature and duration,48

active layer thickness49, and processing additives.47 Due to these
tunable parameters, the study becomes more complex. To select
the most optimal parameter combination, the one-variable-at-a-
time method (Edisonian approach) is most often used.40 In this
trial-and-error approach, a lot of time and expensive materials
are consumed without a guarantee of reaching the most optimal
set of parameters. Such processes require a long time because
they have to investigate the vast chemical space of materials.
To counteract this, machine learning (ML) models have allowed
researchers to investigate chemical space and its properties more
effectively, saving time and money. The availability of large
training datasets, superior algorithms, and ever-increasing pro-
cessing power has excited the interest of materials scientists in
ML. Photovoltaic parameters such as power conversion efficiency
(PCE), short circuit current density (JSC), open circuit voltage
(VOC), fill factor (FF), non-radiative voltage loss, and frontier
molecular orbitals (FMO) have been used as target variables in
many ML related studies for OSCs.

ML models are implemented for photovoltaic property
prediction in OSCs using inputs such as molecular properties
(MP), molecular descriptors (MD), fingerprints (FP), FMO, and
molecular images. For the studies on OSCs, calculated descriptors/
fingerprints of donor and acceptor are concatenated, and the total
number of input descriptors for the ML model becomes very high
and demands suitable feature engineering. Even after performing
feature engineering, the remaining number of input descriptors are
still high and cause degraded results by ML model. This is termed
as ‘‘curse of dimensionality’’. Here comes the use of dimension-
ality reduction techniques such as principal component analysis
(PCA), which is commonly used in the community. ML has
granted the OSC research community entirely new abilities from
predicting photovoltaic properties,50 quantitative structure–prop-
erty relationship (QSPR),51,52 design of experiments (DOE),47,53

novel polymer/NFA discovery,54,55 and robotization of labs.48,56

Most of the studies in the field are regression problems, and only
a few are done for classification.

This review article is written to offer a synopsis of ML
applications in OSCs. Section 2 describes the ML workflow,
from data gathering to novel materials discovery. In addition,
available datasets and their categories are also discussed. In
Section 3, research papers on ML implementation in OSCs are
analyzed and reviewed. The review is grouped on the basis of
the acceptor type: (1) fullerene acceptor (FA), (2) non-fullerene
acceptor (NFA), and (3) mix of FA and NFA. In Section 4,
problems and future scope are discussed.

2. Machine learning workflow

To begin any ML project, professionals in the relevant field are
consulted to help define the aims and targets of the models.
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This is the most critical phase since the target must be learnable
from accessible information such as microscopic properties,
molecular descriptors, molecular fingerprints, and DFT calcu-
lated descriptors. When the prediction objective is chosen
incorrectly, it might lead to models with spuriously significant
errors or models that aren’t generalizable. After setting the
research objectives, ML is implemented by systematically
implementing the process summarized as (1) data gathering,
(2) data preparation, (3) model training, (4) model evaluation,
and (5) discovering and testing novel materials. Fig. 2 repre-
sents a high-level overview of the steps involved in the ML
workflow.

2.1. Data gathering

For ML application in OSCs, input data are required to train the
ML model, whether the task is prediction of photovoltaic
properties or clustering of molecules into different categories.
Early research in OSCs was dominated by fullerene acceptor-
based solar cells because of high electron mobility due to their
isotropic nature; thus, plenty of data could be easily collected
from the literature for ML applications.

Prof. Alan Aspuru-Guzik and his team run the clean energy
project. They created the Harvard clean energy project (HCEP)
dataset consisting of 2.3 million compounds derived from 150
million DFT calculations to find high-efficiency OSC materials.57–59

All these molecules are generated using 26 molecular building
blocks. The properties include FMO, photovoltaic performance
parameters (Jsc, Voc, PCE), and stoichiometric formulas, and
various studies have been performed using this dataset.59,60 For
high-throughput virtual screening, the HCEP dataset has been
used by several research groups. Compounds in the HCEP
dataset are considerably different and structurally simple from
those found in the real world. Therefore, potential candidates
for high-performance OSCs are less likely to be discovered from
the HCEP dataset.

In 2006, the Scharber model45 was developed to predict the
PCE of fullerene based OSCs and the model has been used in
various high-throughput screenings.61–63 Since this model

considers only a few electronic parameters and no other
structural descriptors are considered, the performance of this
model is relatively poor. Brabec et al.64 proposed a modification
to the Scharber model by taking the absorption of non-fullerene
acceptors (NFAs) into account. In 2018, Ma et al.50 created a FA
based dataset of 280 OSCs with small molecule donors, and the
same dataset was used by Goharimanesh et al.65 in 2022
for interpretable ML models. Saeki et al.66 in 2018 created a
FA based dataset of 1200 OSCs with polymer donors for PCE
prediction, and the same approach was used by Wei et al.67 for
500 NFA based OSCs. In 2019, Chen68 used the 1200 dataset by
Saeki et al.66 for virtual screening of conjugated polymers.
In 2019, Troisi et al.69 and Ma et al.70 created FA datasets of
249 and 300 OSCs with small molecule donors. Ma et al.71 used
their earlier dataset (# = 300)70 to unravel correlations between
device performance parameters and molecular properties. In
2019, Lee72 also developed a dataset of 124 fullerene derivative-
based ternary OSCs for predicting PCE, and further in 2020,
Lee73 used the same dataset for Voc prediction of ternary OSCs.

In 2015, Zhan et al. introduced efficient NFSMAs by synthesis
of ITIC.74 In 2017, Zhao et al.75 presented the first NFA-based BHJ
organic solar cell that outperformed the state-of-the-art solar cells
with fullerenes as acceptors. Now NFA-based OSCs have crossed
efficiency over 19%.17,18 NFAs are used much more in recent
studies due to their tunable absorption spectra, easily adjustable
FMO, solubility, photostability, and thermal stability.12,76–78 With
the generation of new datasets for NFA-based OSCs, interest in
NFA-based datasets is gathering momentum across the globe in
ML applications.

Aspuru Guzik et al.61 in 2017 created a dataset of 51 000
NFAs with PCDTBT as the donor material. In 2020, Min et al.79

created a dataset of 565 polymer : NFA based OSCs for the
discovery of new D : A combinations. In 2020, Lee80 created a
dataset of 135 NFA-based OSCs for PCE prediction, and later in
2022, Lee81 used the same dataset (# = 135) to identify the
correlation between FMO and open circuit voltage of OSCs.
In 2021, Saeki et al.82 created a dataset of 566 polymer donor :
NFA based OSCs and later in the same year increased their

Fig. 2 Workflow of ML in OSCs.
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dataset to 131883 for comparison. Later in 2022, Saeki et al.
used their earlier dataset (# = 1318) for machine learning-
assisted polymer design84 and used failure data to improve PCE
prediction.85 Liu et al.86 created a dataset of 157 non-fullerene
ternary OSCs to predict PCE by using FMO of donor, acceptor,
and the third component as input descriptors. Ma et al.51

created datasets of 351 polymer : NFA OSCs for optimization
of donor–acceptor combination. Sharma et al.87 manually
collected a dataset of 154 polymer : NFA OSCs for prediction
of non-radiative voltage losses. To predict the PCE of P3HT
donor-based OSCs, Wang et al.88 created a dataset of 283
NFAs from the literature with single donor P3HT. Similarly,
Wang et al.89 conducted a study on 265 NFAs with single donor
PTB7-Th. Wang et al.90 collected a dataset of 164 NFSMAs from
the literature with PBDB-T as the donor. In 2022, Lu et al.91

created a dataset of 717 NFA based organic solar cells for PCE
prediction.

Aspuru-Guzik et al.92 published a collection of 350 organic
small molecules and polymers from the literature that were
used as p-type materials in OSCs. This model has been widely
used to train QSPR models.54,93–95 To build structure–property
relationship, Sun et al.96 in 2019 developed a dataset of 1719
OSCs with a mix of FA and NFA. For multicomponent materials
optimization in BHJ OSCs, Troisi et al.97 in 2019 gathered a
dataset of 320 D : A combinations for PCE prediction. In 2019,
Kettle et al.98 created a dataset of B1900 OSCs with corres-
ponding device structure, performance, and stability. Kettle
et al. later used their dataset to study enhancing stability99

and understanding the trade-offs between device performance,
stability, and environmental impact.100 To study the effect of
increasing descriptor set size, Troisi et al.46 in 2020 created a

dataset of OSCs with a mix of FA and NFA. Later in 2022, Troisi
et al.101 used the same dataset (# = 566) for PCE prediction of
completely new molecule families (extrapolation) by exploring
different cross validation techniques. In 2020, Lee102 gathered
the first dataset for 70 tandem OSCs (both conventional and
inverted) for PCE prediction. In 2021, Sun et al.103 gathered a
dataset of 1758 donor materials (mix of polymers and small
molecules) and tested their novel fingerprinting technique for
expressing 6180 different fragments (bits). In 2022, Hutchinson
et al.104 created a dataset of 84 OSCs and used simplified time-
dependent density functional theory (sTD-DFT) for speeding up
the calculations by 2–3 times. A summary of datasets used for
ML studies in OSCs is given in Table 1.

2.2. Data preparation

After gathering a dataset, suitable set of descriptors are required
for prediction of a specific target property. Descriptors used for
machine learning applications should be easily accessible so that
predictions for unexplored materials or combinations could be
quick after saving the model. The solution is to use descriptors
that are directly calculated from the chemical structure. In OSC
studies, the commonly used input descriptors are microscopic
properties (MP), molecular descriptors (MD), molecular finger-
prints (FP), frontier molecular orbitals (FMO), and images.

From photon absorption to transport of charge carriers to
their respective electrodes, there are a number of microscopic
properties that highly influence the PCE of OSCs.50 Some of the
microscopic properties that have been used in ML studies for
OSCs are charge carrier mobility, optical bandgap, electron–hole
binding energy, and many more. However, they are expensive to

Table 1 Summary of datasets used for ML studies in OSCs

Source Donor Acceptor Data size Descriptors Method Year published Ref.

Literature SM FA 280 MP Regression 2018 50 and 65
Literature Polymer FA B1200 MP, FP Regression, classification 2018 66 and 68
Literature SM FA 249 MP, FP Regression 2019 69
Literature SM FA 300 MP Regression 2019 70 and 71
Literature SM, polymer FA 124 FMO Regression 2019 72 and 73
HCEP Polymer NFA 51 000 Scharber model Regression, classification 2017 55, 61, 105 and 106
Literature Polymer NFA B500 FP Regression 2019 67
Literature Polymer NFA 565 FP Regression 2020 79
Literature SM, polymer NFA 135 MP, FMO Regression 2020 80, 81
Literature Polymer NFA 566 MP, FP Regression 2021 82
Literature Polymer NFA 1318 MP, FP, MD Regression 2021 83–85
Literature Polymer NFA 157 FMO Regression 2021 86
Literature SM, polymer NFA 154 MP, FP, MD Regression 2021 87
Literature P3HT NFA 283 MD Regression, classification 2021 88
Literature PTB7-Th NFA 265 MD, DFT Regression 2022 89
Literature PBDBT NFA 164 MD Regression 2021 90
Literature Polymer NFA 351 MP, FP, DFT Regression 2021 51
Literature SM, polymer NFA 717 MD Regression 2022 91
HOPV SM, polymer FA, NFA 350 MP, DFT Regression 2016 54 and 92–95
Literature SM, polymer FA, NFA 1719 FP, MD, Image Classification 2019 96
Literature SM, polymer FA, NFA 320 MP, FP Regression 2019 97
Literature SM, polymer FA, NFA B1900 Device structure Regression 2019 98–100
Literature SM, polymer FA, NFA 566 MP, FP Regression 2020 46 and 101
Literature — FA, NFA 70 FMO Regression 2020 102
Literature SM, polymer — 1758 FP Regression 2021 103
Literature Polymer FA, NFA 84 MP, DFT Regression 2022 104
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calculate but provide more realistic and accurate measures for
organic materials.

To convert the chemical structure of OSC materials into a
machine-readable format, simplified molecular input line entry
system (SMILES) strings107 are used. Using SMILES strings,
molecular descriptors and molecular fingerprints are generated
by using various open-source packages. A comprehensive set of
chemical descriptors must be used instead of SMILES strings to
describe molecules in order to create a powerful machine
learning model.

A molecular descriptor is a machine-readable representation
of the information contained within a molecule. Atomic count,
atomic type, and molecular weight are all examples of zero-
dimensional (0D) descriptors because they make no inferences
about topology or atom connectivity. Chemical fragment kinds
and their count can be described using one-dimensional (1D)
descriptors. Alternatively, two-dimensional (2D) descriptors char-
acterize molecular topology and chemistry. Three-dimensional
(3D) descriptors, which take into account conformational infor-
mation like molecular volume and partial surface charges, capture
geometrical information as well.108

A molecular fingerprint is the representation of some known
structural property of a molecule. When the expected data
structure is available, the corresponding bit is set to 1 (ON);
otherwise, it is left at 0 (OFF). More bits mean more structural
information and could be further used for comparing the
structural similarity of two molecules.

FMOs (DHOMO, DLUMO, AHOMO, ALUMO) of donors and acceptors
have a direct impact on the charge carrier dynamics in OSCs.
With these values, LUMOoffset, HOMOoffset, and DonorHOMO–
AcceptorLUMO are also taken into account to predict better
results. For prediction of ternary OSC photovoltaic properties,
FMOs of donor, acceptor, and the third component are simulta-
neously used as input descriptors.86 Similarly, for tandem
OSCs, FMOs for both cells (bottom sub-cell near ITO and top
sub-cell near the metal electrode) are used as input descriptors
for ML models.102

The material structure image or the structure encoded
image could be directly used by convolutional neural network
(CNN) models for materials property prediction or device
property prediction. Models can achieve high accuracy by using
images as input, but much larger datasets are required.

Since not all material qualities are relevant for all perfor-
mance indicators, the list of descriptors that will uniquely
define the data will depend on the purpose or information to
be retrieved. Before feeding input data into ML models for
training, raw data need to be transformed into data that can be
effectively used for supervised learning and this process is
called feature engineering. The steps involved in the feature
engineering process are (1) imputation (handling missing
values), (2) encoding categorical variables, (3) handling outliers,
(4) scaling (min–max scaling and standardization scaling),
and (5) creating new descriptors (from domain knowledge).
With the increase in the number of descriptors, the number of
data points should be also increased for effectively training a
ML model. Since in OSCs, large experimental datasets are not

available, high dimensional datasets may confuse ML models,
and dimensionality reduction becomes crucial. Input descriptors
that are highly correlated are not relevant for the model and
are usually dropped based on high correlation coefficient and
variance threshold. The recursive feature elimination (RFE)
technique is preferably used for this purpose. Principal compo-
nent analysis (PCA)109 is a well-known instance of feature
extraction, a technique used to reduce dimensionality by con-
structing a smaller collection of new descriptors from the
original list. After applying such feature engineering techniques,
the dataset becomes ready to train ML models.

2.3. Model training

ML implementations are classified into three categories: supervised
learning, unsupervised learning, and reinforcement learning.

In supervised learning, the model learns the functional
mapping between input descriptors and output values. Both
regression and classification problems come under supervised
learning and is by far the most common type of ML in the
field of OSCs. Unsupervised learning models are used to draw
inferences from datasets that consist of input data but do not
have labeled responses. Lastly, reinforcement learning is a
method that simulates the way in which people learn by
interacting with their surroundings. This method allows an
algorithm to improve its performance on a variety of tasks by
receiving feedback in the form of rewards or punishments.

The goal of classification is to predict class labels from the
input data. In binary classification, there are only two class
labels; if class labels are more than two, it is called multiclass
classification. Classification of organic compounds with a high
PCE in OSCs has been used in many studies. Because classifi-
cation methods provide discrete results, a metric is required to
compare the distinct classes. Classification metrics measure a
model’s performance and tell you how excellent or poor the
classification is, but each evaluates it differently.

In the regression task, we try to predict a continuous
dependent variable using a set of independent variables. For
example, photovoltaic properties, such as PCE values, are mostly
predicted. Prediction error is used to quantify the success of a
model in regression situations. Prediction error, also known as
residuals, is the discrepancy between the observed and expected
values. The goal of the regression model is to find the best line fit
that minimizes the discrepancy between the predicted and
observed values. Researchers are actively working to develop a
more precise model based on a variety of usability considerations.
To gauge the success of a new regression model, it is customary to
benchmark it against previously developed models using a set of
accepted metrics. Most commonly, these ML architectures for
OSC studies are directly accessed from the scikit-learn python
package.110

Quantitative structure–property relationship (QSPR) models
are being used to understand the hidden relationship between
materials and their photovoltaic properties.52 A relationship
between the structure of materials and their target property
could be obtained by generating feature importance53 and
visualization of decision tree.71 Various ML methodologies have
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been used specifically on OSCs for QSPR.111 Model training is
done by selecting a suitable cross-validation method for getting
an optimal set of hyperparameters for the selected ML model.
Generally, K fold cross-validation is used, but in cases like OSCs
where available experimental datasets are not large, leave-one-
out-cross validation (LOOCV) is often used. There are currently a
plethora of resources available to help with the creation of ML
models for use in the materials science field. There has been an
explosion of specialized open-source ML software libraries for
materials research such as scikit-learn,112 TensorFlow,113 and
PyTorch.114

2.4. Evaluation metrics

A model’s performance may be monitored and measured using
metrics (during training and testing). In any machine learning
pipeline, performance indicators, also called evaluation metrics,
play a significant role. Evaluation metrics are used to quantify
performance and compare ML models for classification or
regression. We have restricted our focus to supervised learning
evaluation metrics.

The accuracy (A) metric simply measures how often the
classifier predicted correctly. The Confusion Matrix is a table-
based representation of the ground-truth labels versus the
model’s predictions. For each row in the confusion matrix,
instances in a predicted class are represented, whereas occurrences
in a real class are represented in each column. True Positive (TP)
denotes the number of positive class samples correctly classified by
the model. True Negative (TN) signifies the number of negative
class samples classified correctly by the model. False Positive (FP)
denotes the number of negative class samples predicted incorrectly
by the model. False Negative (FN) signifies the number of positive
class samples predicted incorrectly by the model.

The Confusion Matrix is not technically a performance
statistic, but it serves as a foundation for evaluating other
metrics such as precision (P) and recall (R). When False Positives

are of more concern than False Negatives, precision is helpful.
Precision is the ratio of True Positives to total number of
predicted positives. Recall or Sensitivity is a useful metric in
cases where False Negative is of higher concern than False
Positive. Recall is the ratio of true positives to total number of
actual positives. The F1 score is the harmonic mean of precision
and recall. The F1 score is primarily used for comparing different
classifier models. The false positive rate (FPR) is defined as the
ratio of False Positives to the total number of actual negatives.
Specificity is the ratio of true negatives to total number of actual
negatives. All major classification evaluation metrics are given in
Table 2.

The receiver operating characteristic (ROC) curve is a
probability curve that shows how well a classification model
works at all classification thresholds by plotting two para-
meters: the true positive rate (TPR) and the false positive rate
(FPR). The area under the ROC curve (AUC) is a measure of how
well a model can tell the difference between two classes. The
better the model can guess 0’s are 0’s and 1’s are 1’s, the higher
the AUC.

Some of the most common measures of evaluation for
regression models are outlined here. The Pearson correlation
coefficient (r) is the most widespread measure for measuring
linear correlation. It measures the strength and direction of
the relationship between two variables and ranges between
�1.0 and +1.0. The R2 score is defined as the proportion of
variance in a dependent variable that is predictable from the
independent variables. It is also known as ‘‘coefficient of
determination’’. Mean absolute error (MAE) is one of the most
used evaluation metrics and is simply calculated as absolute
difference between actual and predicted values. Mean absolute
percentage error (MAPE) is the percentage equivalent of MAE
normalized by true observations. Mean squared error (MSE)
is similar to MAE, but the error is squared here. Root mean
squared error (RMSE) is the most widely used evaluation

Table 2 Metrics and their equation used for evaluating the performance of classification and regression ML models

Classification metric Equation Regression metric Equation

Accuracy (A) TPþ TN

TPþ TNþ FPþ FN

r Pn
i¼1

xi � �xð Þðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðxi � �xÞ2

Pn
i¼1
ðyi � �yÞ2

s

Precision (P) TP

TPþ FP

R2

1�

Pn
i¼1
ðxi � yiÞ2

Pn
i¼1
ðxi � �xÞ2

Recall (R)/sensitivity/true positive rate (TPR) TP

TPþ FN

MAE 1

n

Pn
i¼1

xi � yij j

F1
2
P�R

PþR

MAPE 1

n

Pn
i¼1

xi � yi

xi

����
����� 100

FPR FP

TNþ FP

MSE Pn
i¼1
ðxi � yiÞ2

n
Specificity/true negative rate (TNR) TN

TNþ FP

RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1
ðxi � yiÞ2

n

vuut
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metric. It is simply the square root of MSE. Equations for these
evaluation metrics are provided in Table 2. In Table 2, xi

denotes the actual value, %x denotes the mean of actual values,
yi denotes the predicted value, and %y denotes the mean of
predicted values.

2.5. Discovery

Structural flexibility of organic semiconductors provides vast
chemical search space for OSC materials, and ML is being
utilized for this purpose with full potential. Trained ML models
are used for high-throughput screening of novel OSC materials
that the models have never seen during the training phase. High-
performing materials predicted by the ML models are screened
out, and their predicted property is validated experimentally.

3. Review of ML in OSC research
3.1. FA based OSCs

In 2018, Ma et al.50 gathered a dataset of 280 small molecule
OSCs with 270 distinct small molecule donors and two distinct
acceptors (PC61BM and PC71BM). Five ML models (LR, k-NN,
ANN, RF, GB) for PCE prediction were employed with 13 micro-
scopic properties as inputs for ML models. The 13 microscopic
properties used as inputs for ML models are (1) number of
conjugated atoms in the main conjugation path of the donor
molecule (ND

atom), (2) polarizability, (3) energetic difference of
LUMO and LUMO�1 (DL), (4) energetic difference of HOMO
and HOMO�1 (DH), (5) vertical ionization potential of donor
molecules (IP(n)), (6) reorganization energy for holes in donor
molecules (lh), (7) hole–electron binding energy in donor molecules

(Ebind), (8) energetic difference between LUMO of donor and LUMO
of acceptor (EDA

LL ), (9) energetic difference between HOMO of donor
and LUMO of acceptor (EDA

HL), (10) energy of transition to singlet
excited state with largest oscillator strength (Eg), (11) change in
dipole moment in going from ground state to first excited state for
donor molecules (Dge), (12) energy of electronic transition to lowest-
lying triplet state (ET1), and (13) energetic difference between LUMO
and LUMO+1 of acceptor (DA

L). The GB model performed the best
for the test set (r = 0.79) (Fig. 3(a)) and using LOOCV (r = 0.76)
(Fig. 3(b)). As shown in Fig. 3(c and d), descriptor importance
revealed that for both ensemble techniques GB and RF, out of the
13 descriptors, hole–electron binding energy (Ebind)115 is the most
important descriptor.

Saeki et al.66 designed a polymer for OPV using machine
learning for the first time. Despite the advances in ML, data-
driven approaches for OPV are not performing that well. In this
work, the authors have used supervised algorithms (RF and ANN)
for screening potential polymer–fullerene OPV. The authors con-
ducted a study on B1200 polymer–fullerene data collected
from the literature (500 papers). Using the random forest model,
they achieved a correlation coefficient (r) of 0.6 to 0.7. Various
parameters have been used in this study such as Mw, Eg, FMO, and
fingerprints (MACCS116 and ECFP6117). In the next step the
polymer design scheme is used as depicted in Fig. 4. By using
the 2.3 million HCEP dataset, 1000 molecules were selected, and
MACCS fingerprints were used to train the classification model for
PCE. The model gave an accuracy of 48%. Based on synthetic
feasibility, they selected one polymer with predicted PCE (5% to
5.8%) but got only 0.53% PCE experimentally. The reasons for
poor results by the authors are (1) less dataset and (2) poor
performance of the Scharber model. Non-availability of exact

Fig. 3 (a) Theoretically predicted versus experimental PCE for the testing set (30 molecules). (b) All data points using the LOO cross validation technique
for the GB model. (c) The descriptor importance for the GB. (d) The descriptor importance for the RF. Descriptors are in the following order: (1) ND

atom, (2)
polarizability, (3) DL, (4) DH, (5) IP(n), (6) lh, (7) Ebind, (8) EDA

LL , (9) EDA
HL, (10) energy of transition to singlet excited state with largest oscillator strength (Eg),

(11) change in dipole moment in going from Dge, (12) ET1, and (13) DA
L. Reproduced with permission50 Copyright, 2018, John Wiley and Sons.
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processing conditions, including film thickness, solvent, solvent
additive, p/n blend ratio, and thermal solvent annealing, is a
significant issue for this study. The authors also focused on the
unavailability of essential data such as (1) purity of the polymer,
(2) surface free energy, (3) polymer orientation, and (4) BHJ
morphology associated with miscibility.

Chen68 used a dataset of 1203 polymer–fullerene OSCs by
Saeki et al.66 for virtual screening using RF and SVM models.
Using RDKit,118 morgan fingerprints117 were calculated as
input descriptors, and the use of morgan radius further
improved the model accuracy. Predictions of these two models
were further ensembled to achieve more accurate results
(r = 0.653).

Using the concepts of design of experiments (DoE),119 one
may test and optimize several variables at the same time.
Minimizing experimental effort while maximizing experimental
information output is meant by DoE, a strategy for conducting
experiments. In 2018, Buriak et al.47 demonstrated the ML
model and DOE integration to create meaningful multidimen-
sional maps for insights on PCE. For DoE on the PCDTBT :
PCBM solar cell, four initial parameters with four levels each
were chosen: (1) donor weight percentage, (2) total solution
concentration, (3) bulk heterojunction spin cast speed, and (4)
processing additives. A complete analysis would require 44 =
256 experiments; by using fractional factorial design only 16
experiments were performed. With variance analysis of all the
parameters, the contribution of the ‘‘processing additive’’ was
low and hence was dropped for further analysis. These data
were fit using support vector machine (SVM) with radial basis
function (RBF) kernel to determine PCE. Three-dimensional
maps were generated to visualize PCE approximation in three-
parameter space.

Troisi et al.69 in 2018 used the Scharber model on a dataset
of 249 organic donor–acceptor pairs, where acceptors are
limited to only C60, PC61BM, or PC71BM. High accuracy was
attained using the Tanimoto similarity index between donors
and the Euclidean distance of electronic properties for PCE
predictions. Prediction results were obtained utilizing both
topological and electronic descriptors with KRR (r = 0.68) and
k-NN (r = 0.61) algorithms. The authors concluded that the
Scharber model performs poorly when studied on a collected
dataset with r = 0.38 for Voc, 0.17 for Jsc, and 0.18 for PCE.
Ma et al.70 (2019) created a dataset of 300 OSCs (small molecule
donor and fullerene acceptor). More than 10K molecules were
generated for creating a search space by using 32 unique
molecular building blocks (donor, acceptor, P-spacer, and
end-capping groups) and 17K DFT calculations. Five machine
learning models were trained on 250 data points using 10-fold
cross-validation, and the results were compared. The best
results were achieved by GBRT (r = 0.80) and the worst results
by the Scharber model (r = 0.14). The authors gave the following
reasons for the failure of the Scharber model: (1) oversimplified
model and (2) the limitations of DFT in estimating FMO. The
authors identified important moieties using the GBRT model.
They filtered out 126 potential molecules with predicted PCE 4
8% and suggested synthesizing materials and fabricating the
devices.

Ma et al.71 used an earlier dataset of 300 fullerene-based
OSCs70 and used two ML models (RF and GBRT) to predict Jsc,
Voc, FF, and PCE. Special attention is given to Jsc and Voc

prediction because of potential commercial applications: water
splitting for high solar to fuel energy conversion (high Voc is
required) and solar-window application (high Jsc is required).
13 molecular properties were used as input descriptors for ML

Fig. 4 Scheme of polymer design by combining the RF screening and manual screening/modification. The picked-up molecule or polymer in each
stage is shown. Reproduced with permission66 Copyright r 2018 American Chemical Society.
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models and also inspected visually by using decision tree for all
target variables (Jsc, Voc, FF, and PCE). The GBRT model gave
the best results for all four cases Jsc (r = 0.66), Voc (r = 0.67), FF
(r = 0.71), and PCE (r = 0.78).

Ternary OSCs are made by introducing a third component
into the binary blend. Adding a third component in the blend
increases light harvesting, reduces energy loss, and creates
more D/A interfaces, facilitating exciton dissociation more
effectively. In 2019, Lee72 created a dataset of 124 fullerene
derivative-based ternary OSCs (published during 2012–2019).
The dataset was manually collected from the literature
(4100 papers) and consisted of FMOs of donor, acceptor,
and the third component, and their corresponding PCE. Using
this dataset, five ML models (RF, GB, k-NN, LR, and SVR) were
compared to predict PCE, and the best results were achieved
with RF (R2 = 0.77) followed by GB (R2 = 0.73). The authors also
studied a two-class classification model on the same dataset,
class1 (PCE 4 9%) and class2 (PCE o 9%). Again, the RF model
performed the best with a test accuracy of 0.76, and with
further hyperparameter optimization, the test accuracy
improved to 0.855. Lee73 used an earlier dataset72 (# = 124) for
the prediction of open-circuit voltage (Voc) in ternary OSCs using ML
models (RF and SVR). FMOs of donors, acceptors, and the third
component were taken as input descriptors. The RF model per-
formed the best with R2 = 0.77 for the test set and was further used
to generate feature importance scores. According to the model,
HOMO and LUMO of donor are the two most important factors that
influence Voc. Using a contour plot, the author visualized optimal
energy level alignment rules for donor and the third component.

Small datasets are not ideal for training a neural network; in
the case of OSCs, large experimental datasets are not available.
MacKenzie et al.120 generated a dataset of 20 000 devices using

the Shockley–Read–Hall based drift-diffusion model using gpvdm.
For all the devices, dark and light current–voltage curves were
simulated using randomly assigned electrical parameters such as
trap densities, recombination time constants, carrier trapping
states, energetic disorder, and parasitic resistance. They demon-
strated their method for getting optimal surfactant choice and
annealing temperature in terms of charge carrier dynamics in
P3HT, PBTZT-stat-BDTT-8, and PTB7 based OSCs with PCBM
acceptors. All these electrical parameters were included in the
output layer node of the neural network as depicted in Fig. 5. After
model training the neural network is used to predict electrical
parameters using dark and light current–voltage curves as input.

Goharimanesh et al.65 in 2022 used 240 small molecule OSC
data from the dataset of Ma et al.50 The performance of six ML
models (LR, k-NN, ANN, RF, GB, and XGB) was compared for the
prediction of PCE. Expensive quantum chemical descriptors were
used as input (calculated with the Gaussian 09 package), and ANN
performed the best (r = 0.79) on the training set. The authors also
designed a new technique for mapping structure–property rela-
tionships by combining the Taguchi design of experiments
(TDOE) approach and ML. The complete workflow of this study
using the TDOE approach is represented in Fig. 6. A PCE map
represented model interpretability for the following descriptors
studied: energetic difference between LUMO+1 and LUMO of
donor (DL), energetic difference between HOMO and HOMO�1
of donor (DH), optical gap (DHL), hole reorganization energy (lh),
exciton binding energy (Eb), and LUMO band offset (DLUMO).

3.2. NFA based OSCs

Aspuru Guzik et al.61 in 2017 created a dataset of 51 000 NFAs
based on tetraazabenzodifluoranthenes (BFIs), diketopyrrolo-
pyrroles (DPPs), perylene diimides (PDIs), benzothiadiazole (BT),

Fig. 5 A diagram of the neural network used to extract material parameters from the data within this paper; the actual network used had ten times more
neurons in each hidden layer than the diagram depicts but otherwise the same structure. Visible on the left hand side of the image are the experimental
(or simulated) data, with the red dots on the curves representing the points at which the curves were sampled to form input vectors for the neural
network. (b) In the diagram a light and a dark JV curve are each being sampled at 6 places to provide 12 data points to the neural networks 12 input nodes.
Any number or combination of experimental measurements can be placed on the input to the network; one simply has to extend the number of input
neurons, and retrain the network. The neural network itself has red input nodes, blue hidden layers, and green output nodes. Each output node
corresponds to a device/material parameter such as charge carrier mobility or trap density. Inset: A single neuron. Reproduced with permission120

Copyright r 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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and fluoranthene-fused imides. Since the Scharber model was
used to predict the PCE of NFAs and poly[N-90-heptadecanyl-2,7-
carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)]
(PCDTBT) as the donor material, poor results were obtained while
comparing true and predicted PCE (r = 0.43 and R2 = 0.11).

To discover novel active materials for OSCs, generative
models121 are being used effectively. Generative models generate
new molecules by creating a latent space from molecular infor-
mation and then manipulating the latent space. For OSCs, novel
polymer donors54,63 and NFAs55 are generated using generative
models. Hada et al.63 developed a model for high throughput
screening of thiophene-based D–A polymers. They automated
the process in three steps: (1) polymer generation, (2) orbital
energy estimation by Hückel-based model, and (3) photovoltaic
property calculation. Using donor and acceptor units, 380 poly-
mers were generated and studied, followed by identification of
promising acceptor units for photovoltaic materials. The results
are not significant in terms of PCE because the Scharber model
solely uses orbital energies.

In recent years, CNNs have established themselves as the
standard framework for computer vision tasks. Then the training
model is utilized for regression or classification task. Because of
its capacity to build and evaluate features in image-like inputs,
CNN has become extremely popular. Zhao et al.55 in 2019 used
CNN for the generation of new acceptors and their structure–
property prediction. The authors have demonstrated the genera-
tion of new molecules by CNN and controlling the diversity of
the molecules by variation in the number of convolution layers.
Post molecule generation, various descriptors are used for prop-
erty prediction such as extended connectivity fingerprints, mole-
cular graphs, bag of bonds, coulomb matrix, and SMILES strings.

The attention mechanism is adopted to get character-specific
weights in SMILES strings. The model is used for prediction of
HOMO, LUMO, and PCE. The authors have used a dataset from
Aspuru Guzik et al.’s (# = 51 000) dataset.61 For this study, all the
molecules with PCE o 0.5% were removed, and 24 000 molecules
were chosen randomly. Out of this, 20 000 were used for training,
2000 for evaluation, and 2000 for testing. The donor used for this
study is fixed, and the Scharber model was used for calculating PCE.

In 2019, Sun et al.105 used CNN on the HCEP dataset for the
prediction of PCE. Without any prior transformation, the CNN
model uses chemical structure images of donor materials
as input. The dataset is classified into two categories of PCE
(0–4.9% and 5–9.9%). The classification model achieved an
accuracy of over 90%. The impact of data size on model accuracy
is also studied. The major drawbacks of this study are (1) donor
molecules being used today are much more structurally complex
and bigger in size compared to those in the HCEP dataset and (2)
PCE is calculated using the Scharber model, and the Scharber
model estimates PCE using DFT-calculated energy levels.

Using a similar approach as in ref. 66, Wei et al.67 performed
a similar study with a 500 polymer : SMA dataset using ECFP6
fingerprints. The authors studied two new polymers (BO2FC8
and BO2FEH) and using the random forest model they pre-
dicted PCE (11.2% and 10.9%). They also validated the results
with PCE of 11.0% and 6.4% from experimental findings.
Interestingly the former gave consistent results with the ML
model, while the latter results did not agree with the ML model.

Min et al.79 used five ML models, linear regression (LR),
multiple linear regression (MLR), boosted regression trees
(BRT), random forest (RF), and artificial neural network
(ANN), on 565 polymer donor : NFA pairs to predict PCE.

Fig. 6 Steps of the research in this paper: (A) data construction, (B) feature extraction, (C) ML prediction, (D) SHAP mappings, (E) optimization by TDOE,
and (F) rational insights. Reproduced with permission53 Copyright r 2022 Elsevier Ltd.
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The dataset was manually collected from the literature (274
papers). 477 D : A pairs were used for training and the best
results were achieved by BRT (r = 0.71) and RF (r = 0.7), while
the other models performed poorly (LR (r = 0.54), MLR (r = 059),
and ANN (r = 0.6)). Based on the structural fragment in donor
and acceptor in 565 D : A pairs, the authors created a search
space dataset of 3 20 76 000 D : A pairs and predicted their PCE
using the trained BRT and RF model. The complete workflow is
depicted in Fig. 7. From the predictions of both models, it was
observed that for RF, 12.27% of D : A pairs gave a PCE of greater
than 11%, while for BRT, 14.15% D : A pairs gave a PCE of
greater than 11%. Six D : A pairs were selected for experimental
validation with donors (PM6 and PBDB-T) and acceptors
(Y-ThCN, Y-ThCH3, and Y-PhCl). These acceptors were selected
for experimental validation because they are easily synthesizable
with a one-step method. The PCE values obtained in experiments
were quite similar to those predicted by BRT and RF.

Lee80 created a dataset of 135 donor : NFA pairs from literature
reviews122,123 consisting of 117 unique NFA and 30 unique donor
materials. FMOs and bandgaps were used as input descriptors to
predict PCE using RF and GB regression models. For the test set,
the RF model gave the best results (R2 = 0.80), and the acceptor
bandgap was given the highest feature importance. Buriak et al.124

in 2020 used the same ML-DOE approach as in ref. 47 for an all-
small-molecule organic solar cell with the donor DRCN5T and
acceptors ITIC, IT-M, and IT4F. Their work focused on active layer
optimization of OSCs, and four initial parameters were used for
DoE: (1) solution concentration of donor and acceptor ink, (2)
donor fraction, (3) temperature, and (4) annealing time. Maps
were derived for power conversion efficiency to visualize the effect

of parameters and find the most optimal combination of
parameters. It is important to note that fitting functions like
RBF are good for interpolation only and should not be applied for
extrapolation tasks.

Saeki et al.82 manually collected a dataset of 566 polymer
donor : non-fullerene acceptors and used material property
(Eg, HOMO, LUMO, Mw) and ECFP6 fingerprints for prediction
of PCE. The dataset was collected until 2018 and does not
include high-performing NFA of Y6 or ternary solar cells.
The best result (r = 0.85 � 0.02) was obtained using 5-fold CV
and r = (0.85 � 0.02) with LOOCV. From their earlier polymer :
FA dataset (# = 1203)66 and current polymer : NFA dataset
(# = 566), donor and acceptor units were extracted, and a total
of 2 00 932 D–A polymers were virtually generated as shown
in Fig. 8. For all generated D–A polymers, PCE was predicted
with acceptors ITIC and IT-4F. Using the RF model on ECFP6
fingerprints, the authors revealed that feature importance
of ECFP6 fingerprints was more than polymer molecular prop-
erties, and the model gave similar results when polymer
molecular features were removed. Interestingly for IT4F, the
20 polymers with the highest predicted PCE are analogs of
PBDB-T. From top predictions, they selected second-rank poly-
mer PBDT(SBO)TzH and prepared a device with IT4F. Its
predicted efficiency was 10.5%, but it achieved 3.42% PCE
in the experiment, which is quite low. This unsatisfactory
performance of the polymer is due to the poor solubility,
which is also evident from high PDI. They modified PBDT-
(SBO)TzH and synthesized PBDTTzH, PBDTTzEH, PBDTTzBO,
and PBDTTzHD to improve the solubility. PBDTTzEH achieved
a PCE of 7.5%. Although the ML workflow did not suggest

Fig. 7 Workflow of building, application, and evaluations of machine learning methods in this work. (a) Scheme of collecting experimental data and
converting chemical structures to digitized data. (b) Scheme of machine training, prediction, and method evaluation. Reproduced with permission79

Copyright r 2020, The Authors, Springer Nature.
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additives, after using DPE as an additive (0.5 vol%), PCE further
improved to 10.1%.

Saeki et al.83 increased their dataset for study from 56682 to
1318. It is important to note that Y6 and its derivatives are
included in the increased dataset. The authors studied the
effect of dataset size by using ECFP6 fingerprints, Mordred
descriptors, and molecular properties and applying a 5-fold CV.
The authors studied the effect of categorizing different NFAs
and observed that merging all groups into one dataset improves
the overall result. The authors also studied the effect of
increasing number of data points on ML predictions, and the
results are depicted in Fig. 9. The results reveal that r = 0.25 for
# = 50 and r = 0.79 for # = 200, and saturates at r = 0.82 for # =
4300. For # = 1318, observed r = 0.84.

Saeki et al.84 developed three new polymers (PBDTTzBO,
PFSBDTTzBO, and PFBDTTzBO) and predicted their PCE
with NFAs (IT-4F and Y6). Using the RF model trained on the 1318
dataset,83 predicted PCEs of these three polymers with IT-4F (9.93,
11.35, and 11.47%) were found to be in good agreement with
experimental validation (5.24, 7.35, and 10.30%). On the other
hand, for Y6, an inverse trend was observed between predicted
values (9.20, 12.29, and 12.20%) and experimental validation

(11.98, 1.57, and 6.53%). The authors mentioned that an inverse
relationship in predicted and experimental values of Y6 PCE is
due to a small training set of Y6 acceptors (# = 46) in the complete
dataset (# = 1318).

Liu et al.86 in 2021 created a dataset of 157 non-fullerene
ternary OSCs (published during 2015–2020). Five ML models
(RF, XGBoost, KNN, Decision tree, SVM, Ridge regression, MLP)
were used to predict ternary OSCs’ PCE and compare their
results. FMOs of donor, acceptor, and the third component
were used as input descriptors. The RF model performed the
best for this task. Moreover, fine-tuned classification models
were also compared, and the RF model again gave the best
results indicating its suitability for such application. The study
outcomes make it clear that (1) LUMO of NFA can slightly lower
Voc but significantly enhance Jsc and (2) Voc could be optimized
by shifting the LUMO of the third component slightly up in
ternary OSCs.

Compared with other photovoltaic technologies such as
perovskite solar cells, OSCs have lower Voc and higher non-
radiative voltage loss. Sharma et al.87 created a dataset of 154
unique D : A combinations with their corresponding non-
radiative voltage loss. Combinations of molecular descriptors,
fingerprints, FMO, and optical bandgap (Eg) were used as
inputs for ML models to predict non-radiative voltage loss.

Fig. 8 Scheme of polymer screening for polymer : NFA OPVs. The number
(#) of polymer : FA66 and polymer : NFA (present work) data points was 1203
and 566, respectively. Donor (D) and acceptor (A) units were extracted from
these data after removing overlaps and a total of 200 932 new D–A
polymers were virtually generated. Polymer screening by the RF model
constructed on the supervised ML of polymer : NFA was applied using MP(n)
and FP(n,p) as the descriptors. Reproduced with permission82 Copyright r
2021 Wiley-VCH GmbH.

Fig. 9 (a) Effect of the number of data points (#) of NFA-OPV on the
correlation coefficient of the RF model (5-fold CV). (b) Plots of predicted
and experimental PCE obtained for each #. The color corresponds to the
plot in panel (a). Reproduced with permission83 Copyright r 2021 Amer-
ican Chemical Society.
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Two molecular descriptors (RDKit118 and Mordred125) and four
fingerprints (CDK,126 MACCS,116 PubChem,127 and Morgan117)
were used in this study. Four ML models (RF, GBR, SVR, and
ANN) were used to predict non-radiative voltage loss. The trend
of PCE with non-radiative voltage loss was analyzed, and RF
obtained the best results by using a combination of FMO,
optical bandgap, and RDKit descriptors as input (r = 0.857).
The ML workflow for non-radiative voltage loss is depicted in
Fig. 10.

Wang et al.88 designed a ML model for P3HT : NFA based
OSCs (# = 283). More than 3000 easily synthesizable small
molecule acceptors were designed using various building
blocks. A dataset of 764 small molecule organic semiconductors
was collected from the literature, and their corresponding
molecular descriptors were calculated using OCHEM128 and
Chemdes.129 KNIME130 and Weka131 open-source platforms
were used to perform ML studies. The authors used a two-

step screening approach as demonstrated in Fig. 11. In the first
step, FMOs were predicted using the LR model with # = 764
dataset, followed by the screening of molecules whose FMO
aligns properly with P3HT. After screening out 500 NFAs, in the
second step their PCE is predicted using the SVM regression
model. Further for selection of suitable green solvents, the RF
model was trained on a dataset of 252 solvents to predict their
corresponding Hansen solubility parameters (HSP).

In 2021, Brabec et al.48 created an autonomous materials
and device application platform (AMANDA Line One) for high-
throughput screening and device fabrication. The study was
conducted on PM6/Y6 combination for evaluation of PCE, Jsc,
Voc, FF, and photostability using Gaussian process regressor
(GPR). With this method, the authors reported screening of
PM6 : Y6 OSCs with B100 processing conditions within 70 hours
(including the photostability test) and the highest PCE of 14%
with a fully automated fabrication process. The processing

Fig. 10 Machine learning workflow for the prediction of %DVNR. Data for 154 unique D : A combinations with reported %DVNR are collected from the
literature, having 46 distinct donors and 79 distinct acceptors. Reported FMO and Eg values are taken from the literature and then transformed by median
values for distinct donors and acceptors. SMILES codes of donor and acceptor molecules are generated by using ChemDraw software. SMILES codes are
then used to generate molecular descriptor datasets and molecular fingerprint datasets. Finally, the datasets are scaled and fed into ML models for the
prediction of %DVNR. Reproduced with permission87 Copyright r 2021 International Solar Energy Society. Published by Elsevier Ltd. All rights reserved.

Review Journal of Materials Chemistry C

Pu
bl

is
he

d 
on

 1
9 

O
ct

ob
er

 2
02

2.
 D

ow
nl

oa
de

d 
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

E
du

ca
tio

n 
&

 R
es

ea
rc

h 
Pu

ne
 o

n 
11

/1
9/

20
22

 6
:4

6:
25

 A
M

. 
View Article Online

https://doi.org/10.1039/d2tc03276g


This journal is © The Royal Society of Chemistry 2022 J. Mater. Chem. C

parameters include concentration, D : A ratio, active layer annealing
temperature and time, spin speed, solvent additive variations in
materials and volume, electron transport layer (ETL) material
variation, and ETL annealing temperature and time. With this
study, photovoltaic parameters and device stability could be pre-
dicted using GPR with high accuracy. Also, the PCE and burn-in
losses could be improved by using devices with a medium thermal
annealing temperature and a thin active layer.

Wang et al.89 collected a dataset of 265 NFAs with the PTB7-
Th donor. ML models (RF, k-NN, LR, and SVM) were used for
the prediction of FMO, PCE, and absorption maxima. Input
descriptors were calculated using Gaussian 09, OCHEM,128 and
Chemdes.129 The RF model gave the best results for predicting

PCE on the test set (r = 0.93). Easily synthesizable building blocks
were used to construct more than 5000 novel small molecule
acceptors (SMAs). Over 1700 small molecule acceptors were dis-
carded since they didn’t have matching energy levels in common
with the PBT7-Th. Blue-shifted SMAs were not evaluated any
further. Based on the predicted UV/visible absorption maxima,
the total number of SMAs was whittled down to 2350. The SMAs
were then further scrutinized based on the predicted PCE.
Molecular dynamics (MD) simulations were used to investigate
more than 100 SMAs with more than 13% PCE as shown in
Fig. 12. The Flory–Huggins parameter was used to investigate the
mixing behavior of PBT7-Th : SMA blends. A total of 15 SMAs were
chosen because of their ability to combine well with PBT7-Th.

Fig. 11 Brief description of the whole study. (a) Model training. (b) Library generation and screening of potential candidates. Reproduced with
permission88 Copyright, 2021, Royal Society of Chemistry.
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Ma et al.51 created a reliable QSPR model that integrates
chemical descriptors and device requirements and achieves a
promising inverse optimization for unexplored potential D : A
combinations. The dataset, consisting of 351 D : A combinations
(44 polymer donors and 195 NFAs), was collected from the
literature. Device specifications, 19 electronic properties (using
DFT), and six fingerprints were used as inputs for ML models.
For developing the QSPR model, different combinations of these
input descriptors were studied. With various combinations
of these descriptors, sixty ML models were created with ridge
regression, GB, SVR, ANN, and voting ensemble approach
(combines predictions of all regression models). Since CDK
fingerprints performed the best out of all, it was used for further
analysis. The voting model obtained the best results for PCE

prediction (r 4 0.8). This QSPR model was further integrated
with high-throughput screening by creating a search space
of 19 42 785 D/A pairs, and D/A pairs with PCE greater than
14% were screened out. The complete workflow is demonstrated
in Fig. 13.

Vak et al.49 in 2021 developed a novel research method that
enables quick screening of vast parameter space using methods
relevant to industries (roll-to-roll processing). The PM6 : Y6 :
IT4F ternary system was chosen for the experiment, and 2218
OSCs were fabricated by varying the ratios. This study used
two new terminologies: DD (deposition density) and TDD
(total deposition density), which refer to the quantity deposited
per unit area (in g cm�2) of each substance and their total
(the sum of PM6, Y6, and IT-4F) quantities. As a result, they give

Fig. 12 The screening pipeline to screen the designed SMAs for PBT7-Th : SMA-based OSCs. Reproduced with permission89 Copyright, 2022, Royal
Society of Chemistry.
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information on coating thickness and material composition
ratios at various coating positions indirectly. The RF model
was trained on the 2218 dataset, and for the prediction set a
high-resolution 3D space based on DD for PM6, Y6, and IT4F
was created (80 00 000 rows). Experimental confirmation of the
prediction led to a PCE of 10.2% in the expected thickness
range for the high efficiency formulation (PM6 : Y6 : IT-4F =
1 : 1.08 : 0.27).

Lu et al.91 created a dataset of 717 D : A pairs of OSCs from
the literature (379 papers, published during 2015–2020). In
their dataset, donors are both small molecules and polymers
(# = 192), while all acceptors are NFAs (# = 377). Input
descriptors were calculated using Dragon 7 software132 (5270
descriptors for each donor and acceptor). As demonstrated in
Fig. 14, feature elimination was employed to remove unneces-
sary features. For the prediction of PCE, four ML algorithms
(XGBoost, Decision tree, KNN, and RF) were compared, and
XGBoost performed the best (r = 0.79). The physical meaning of
the significant features was studied by adopting the SHAP
approach to better characterize the relationship between key
features and PCE. Using high-throughput screening on 76 814
D : A combinations using XGBoost, 10 D : A combinations with
high PCE were screened. For ensuring the properties of high PCE
screened out D : A pairs, photoelectric properties were calculated
using DFT, TDFT, and Marcus charge transfer theory.

Banerji et al.106 in 2022 used the CNN model to predict
HOMO/LUMO levels using the HCEP dataset. SMILES strings
are converted to 2D RGB images of chemical structures and are
used as input for the CNN model. Transfer learning is
employed to overcome the poor performance of the deep
learning model on a small dataset. The model is initially
trained on the HCEP dataset and then fine-tuned (retrained)
on the HOPV dataset using a small learning rate. The results are
also compared with a use-case dataset (commercially available
26 polymer donors with experimentally measured and DFT
estimated FMO) consisting of commercially available donor
materials. An illustration of the complete workflow is provided
in Fig. 15.

In 2022, Sun et al.133 manually created a dataset of 29 OSCs
from the literature employing Y6 and its derivative as an
acceptor material and only two donor materials (PBDB-T or
PBDB-TF). With LOOCV, the random forest model shows
promising results and is further used to screen potential
acceptor molecules. Acceptor molecules were split into three
parts, end acceptor unit (A1), donor unit (D1), and core acceptor
unit (A2), and further encoded with the one-hot-encoding
approach. From the dataset all A1–D1–A2 permutations were
created as an acceptor search space for potential acceptor
molecules with high PCE. With both the donors, the number
of D : A combinations were 1296, and PCE predicted by the RF

Fig. 13 Workflow of screening and optimization of D/A pairs and device parameters. Reproduced with permission51 Copyright r 2021 American
Chemical Society.
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Fig. 14 The flowchart of the strategy integrating machine learning (ML) and density functional theory (DFT) for the screening of promising D/A
combinations. Reproduced with permission91 Copyright r 2022 The Authors. Published by Elsevier Ltd.

Fig. 15 (a) Illustration of the convolutional neural network, showing the preprocessing step, the convolutional network (with rectified linear unit (ReLU)
activation function), max-pooling, global averaging, and fully connected layers (with activation functions). (b) Examples of (left) a molecular image,
(middle) the output of two filters after the first max-pooling layer, and (right) the output of the model. Reproduced with permission106 Copyright r 2022
The Authors. Advanced Theory and Simulations published by Wiley-VCH GmbH.
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model was greater than 17% for 25 D : A combinations. The
model predicts that molecules with high PCE possess side
chains of medium length. Five high-performing acceptors
discovered by ML are shown in Fig. 16. The study on five
high-performing acceptor molecules with different donors
reveals that the difference in the photoelectric properties of
these molecules is mainly because of FMO and electrostatic
potential.

Hutchison et al.134 discovered novel NFAs by screening 5426
NFAs using a genetic algorithm and various sequences, sym-
metry and building blocks were analyzed. PBDB-T-SF is used as
the donor material for this study because of its strong absorp-
tion in UV and high-energy visible regions. Out of 5426 NFAs,
1087 predicted PCE greater than 18%, and 159 predicted PCE
greater than 20%. From the study, the A–D–D–D–A or A–A–D–A–A
sequence was found to be best for high PCE. Current terminal
acceptor units used in common NFAs were determined to be top
performers in the GA candidates when picking individual build-
ing blocks.

Solubility of active materials is one of the crucial factors
governing the PCE of OSCs, and it depends on the length of the
solubilizing side alkyl chain. In studies with experimentation
validation of ML models, it is found that PCE predictions are
overestimated, and the materials are not highly soluble.82

Unavailability of failure data (failed experiments with low or 0
PCE) can be considered as the major cause of overestimated
predictions of ML models.85 Recently Saeki et al.85 used artifi-
cially generated failure data for training the random forest
model on NFA based OSCs. To create the failure dataset (# =
875) the authors replaced three 2-ethylhexyl (EH) with methyl
(Me) in the previously reported dataset (# = 1295)83 as shown in
Fig. 17(a). D–A polymers with Me group solubility will be low,

and the PCE is assumed to be zero. Using the RF model with
Mordred descriptors on the experimental + failure dataset achieved
r = 0.84 as shown in Fig. 17(b), and most of the important features
revealed by the model belong to polymer donors (Fig. 17(c)). The
model was also tested for new sets of polymers (Fig. 17e and f (# =
19 613) and Fig. 17(g and h) (# = 2 00 932)). The study revealed that
for both datasets with inclusion of failure data, the prediction range
widens, and predictions of insoluble polymers get shifted to lower
PCE, making model predictions more realistic. To check the
potential of this model, the authors performed experimental
validation by designing and synthesizing 12 new polymers with
four types of backbone and different alkyl chains as shown in
Fig. 17(i). For each polymer, predicted values with and without
failure data are compared with the experimental value as shown in
Fig. 17(j). The results reveal that inclusion of failure data gives more
realistic predictions and holds potential for discovery of high-
performance materials for OSCs.

3.3. Mix based OSCs

The HOPV dataset92 published in 2016 is a collection of 350
organic small molecules and polymers manually collected from
the literature that were used as p-type materials in OSCs. This
model has been widely used to train QSPR models. Using the
Scharber model, Jsc, Voc, and PCE were calculated, while FMOs
and bandgaps were calculated using the DFT functionals BP86,
B3LYP, M06-2x, and PBE0. Many research papers have used this
dataset.54,93–95

Aspuru Guzik et al.93 (2016) calculated Jsc, Voc, and PCE
using the Scharber model. The authors calibrated quantum
chemical calculations using the Gaussian approach to improvise
the results. The study was conducted with the HOPV dataset
on HOMO, LUMO, bandgap, PCE, Voc, and Jsc. The results in

Fig. 16 Five typical machine learning predicted high-performance acceptor molecules with different acceptor units at the end groups (highlighted in
red) and their predicted PCE. Reproduced with permission133 Copyrightr 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
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Fig. 17 (a) Procedure of generating failure data of polymers. (b) Correlation of PCEpred vs. PCEexptl calculated by RF CV using failure data. The r and # values are
appended. (c) Ranking of normalized importance of the RF model. The orange and blue bars are polymer and NFA-related parameters, respectively. (d) PCEexptl vs.
ETA_dBeta, the number one-ranked parameter by importance in the RF model. The red arrows represent a trend. (e and f) PCEpred distribution of 19 613 virtually
generated polymers using IT-4F as the NFA. The PCEpred was predicted by the RF (e) without and (f) with failure data. The categories of soluble/insoluble polymers
were labeled by another RF model. (g and h) PCEpred distribution of 200 932 virtually generated polymers using Y6 as the NFA. The PCEpred was predicted by the RF
(g) without and (h) with failure data. The inset in (g) is the PCEexptl histogram for the dataset. The chemical structure of Y6 is superimposed on (h). (i) Chemical
structures of the synthesized polymers. (j) Predicted PCE of twelve polymers (P1–P3 assume IT-4F as the NFA; P4 assumes Y6 as the NFA) calculated by the RF
model without failure data (meshed blue) and with failure data (solid green). Reproduced with permission85 Copyright r 2022 American Chemical Society.
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terms of Pearson’s r were improved after the calibration was
applied.

Balasubramanian et al.54 generated novel polymer donors
for OSCs using the transfer learning scheme based on long
short-term memory (LSTM). Since the SMILES notation is a
chemical language, LSTM can understand this language’s
grammar and vocabulary. Novel polymer donor SMILES strings
were generated with the LSTM model established on a large
dataset (B1 million) from the GDB17 chemical database135 and
were further tuned on a smaller (B1400 conjugated molecules)
dataset.66,92 A total of 1000 molecules were generated, out of
which 90% were valid SMILES strings with an average Tani-
moto similarity of 0.42 � 0.010. The authors also created a
response surface plot for PCE using PCA and found that newly
generated polymer donors lie in the region of high PCE.

Russo et al.95 demonstrated the pre-screening potential of
machine learning in accurately predicting OSCs’ material prop-
erties and bypassing the need for expensive DFT calculations.
For the HOPV dataset, the authors have used molecular signa-
ture descriptors (chemical fragments of donors and acceptors)
and one-hot descriptors to make their model interpretable. The
model could predict DFT calculated PCE with a standard error
of �0.5.

Sun et al.96 in 2019 gathered a dataset of 1719 donor
materials (mix of polymers and small molecules) from the
literature with fullerene or non-fullerene acceptors. To build
structure–property relationships, ASCII stings, fingerprints,
descriptors, and images were used as input for the ML model.
For the classification study, two classes were created, low
performance (PCE in the range 0–2.99) and high performance
(PCE higher than 3%). The results reveal that fingerprints with
length over 1000 bits perform much better than other descriptors.
81.76% accuracy was obtained in predicting PCE by the RF model
using fingerprints as input. The authors also verified the potential
of the ML model by synthesizing 10 new donor materials for
OSCs, and the predicted PCE values were in good agreement with
the experimental values.

Troisi et al.97 studied the optimization of multicomponent
materials for BHJ OSCs. For this purpose, a dataset of 320 D : A
combinations (262 unique donors and 76 unique acceptors)
was manually collected from the literature, and PCE was
predicted with different ML models (KRR, SVR, k-NN, and
Gaussian process regressor (GPR)). KRR with LOOCV gave the
best results (r = 0.78). Model performance was also verified on
recently published D : A combinations and impressive results
were obtained.

Troisi et al.46 in 2020 created a dataset of 566 D : A pairs (513
distinct donors and 33 distinct acceptors) and studied the effect
of increasing the descriptor set on prediction of PCE using
K-nearest neighbours (KNN), kernel ridge regressor (KRR), and
support vector regression (SVR). The authors divided the
descriptors used in this study into five groups: (1) molecular
topology, (2) properties related to molecular size, (3) properties
related to molecular energy levels, (4) absorption properties, and
(5) mixing properties. Fingerprints were computed using the
RDKit package,118 and miscibility properties were calculated

using SwiddADME.136 The authors concluded that excited state
and miscibility-related properties do not improve the model’s
performance since the information they carry is already encoded
within the structural fingerprint. It is important to remember
that not all machine learning models have the exact computing
cost. Some low-cost methods, such as simple physical descrip-
tors and structural information, already yield good results.

Usually, ML models perform well on the class of compounds
already used in the training set. However, they do not perform
well on a new class of compounds (extrapolation) that have not
been seen in the training stage. Troisi et al.101 in 2020 used
leave-one-group-out (LOGO) cross-validation to predict the PCE
of NFA materials from completely new families and accelerate
materials discovery. The dataset used in this study consists of
566 D : A pairs. The authors have shown that LOGO significantly
improves PCE prediction of unseen materials above and below
the median efficiency. The authors also concluded that physical
descriptors provide much more reliable results than finger-
prints when extrapolating to new chemical families.

Tandem OSCs can simultaneously address narrow absorption
window and thermalization problems by stacking two or more
cells with a complementary absorption range.137 Lee102 created a
dataset of 70 tandem OSCs (37 are conventional and 33 are
inverted) to predict PCE with RF and SVR. FMOs for both cells
(bottom sub-cell near ITO and top sub-cell near the metal
electrode) were used as input descriptors. The RF model per-
formed the best (R2 = 0.69) on the test set. Using feature
importance, FMO of the donor (bottom sub-cell near ITO) was
found to be the most crucial feature in predicting the PCE of
tandem OSCs. The best results were achieved by RF followed by
XGBoost. Feature importance by the RF model suggests high
importance to LUMO of acceptor, while relatively low impor-
tance is assigned to HMO and LUMO of the third component.
The authors also performed a two-class classification study with
class1 (PCE o 16%) and class2 (PCE 4 16%). Again the RF
model performed the best with an accuracy score of 0.97 on the
test set.

Kettle et al.99 in 2020 used a dataset of 1850 OSCs (2011–
2019) with corresponding device characteristics, performance,
and stability data. The stability and performance of OSCs are
estimated using the sequential minimal optimization regression
(SMOreg) model. The dataset is acquired from their earlier
work.98 The key attributes related to OSC degradation were
identified using the initial efficiency (Eo) and time taken to
reach 80% of the initial value (T80). The dataset was separated
for tests conducted under ISOS-L and ISOS-D. The choice of light
spectrum and active materials were found to be the key para-
meters to increase stability for ISOS-L testing, while material-
depending attributes and encapsulation were found to be the key
parameters for ISOS-D testing.

In 2020, Brabec et al.56 introduced robotization of the lab for
OSC studies. With their novel robotized film creation technology,
6048 films can be produced per day. This automated experi-
mentation platform is integrated with an active learning
technique (Bayesian optimization) for 4D parameter space
(PTB7-Th or PBQ-QF, P3HT, oIDTBR, PCBM) of quaternary
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OSC blends. High-throughput experimentation is done by
using the ChemOS software package. The study demonstrates
lower stability for PTB7-Th rich blends than P3HT and PBQ-QF
rich blends. Moreover, the active learning technique is able to
find stability maxima and minima with a 93% reduction of
sample. This study demonstrates that with robotization, 2000
combinations can be screened with less than 10 mg material,
and complex active layer parameter optimization problems can
be solved. The automated platform and workflow of high
throughput experimentation are represented in Fig. 18.

By commonly used fingerprints like MACCS116 and
Pubchem,139 we cannot correlate each bit of fingerprint with
a specific substructure. To overcome this limitation of finger-
prints, Sun et al.103 designed the La FREMD fingerprint for
expressing 6180 different fragments (bits). Integration of the La
FREMD fingerprint and ML allows rapid design and screening
of donor materials for high-efficiency OSCs. This framework is
used on a dataset of 1758 experimentally reported donor
materials. Using the RF model, 15 most important fragments
were identified for high PCE and were compared based on the
newly described variable frequency difference (FD). As shown in
Fig. 19, after identifying important building blocks, a library of
18 960 small molecule donors is created with their combi-
nation. For rapid screening from this library, four ML models
(ANN, GBRT, RF, and SVR) were trained on the donor material
database (1758) with daylight fingerprint as the input descriptor.
The GBRT model gave the lowest RMSE (2.05) and 6337

molecules predicted PCE greater than 8%. 20 promising mole-
cules were selected based on molecular symmetry with Y6 as
the acceptor. For this purpose a new dataset of 44 OSCs with
the Y6 or Y6 derivative was used to train the GBRT model for
PCE prediction and test it on 20 promising molecules selected
earlier. 5 out of 20 promising molecules predicted PCE greater
than 15%.

Hutchinson et al.104 created a model for NFA based OSCs
using 47 input descriptors to predict FF, Jsc, Voc, and PCE. To
speed up the calculation, they used sTD-DFT140 which is 2–3
times faster than TD-DFT. A dataset of 84 D : A combinations
was used for modeling, out of which 6 are polymer donors and
66 are NFAs and 2 are FAs. The results reveal that the sTD-DFT
based model can predict PCE with RMSE = 1.60 � 0.04%.

A methodology is required to rapidly identify optimal device
configurations that optimize net energy output while minimiz-
ing the environmental impact of OPVs. Kettle et al.100 created a
dataset of 1580 OSC devices (2011–2020) with reported PCE and
stability data. The objective is to find optimal OSC materials
and device architectures that are environmentally friendly. For
each device, the net energy (ENet) is also calculated, which is a
function of time taken to degrade to 80% of its stabilized initial
output power (T80), time taken to drop to 80% of initial power at
t = 0 (TS80), and embodied energy (EEmb). The SMOreg model
is used to analyze ENet by using structural components of
each device. GA clustering was used to determine the optimal
material sets for OPV ENet output. This study uses the

Fig. 18 (a) Representations of the three polymer donors and the two small molecule acceptors. Note that the first quaternary system consists of P3HT,
PBQ-QF, PCBM, and oIDTBr (’) and the second consists of P3HT, PTB7-Th, PCBM, and oIDTBr (&). (b) Side view of the automated platform for ink
formulation, coating, and characterization. (c) Experimental workflow with the two approaches adopted in this study: conventional high-throughput
experimentation via grid and the self-driving approach with the ChemOS software package. Reproduced with permission138 Copyright, r 2020 The
Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
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‘‘GenClust++’’ clustering method. By using the genetic search
method clustering, eco-friendly device configurations are

obtained. The complete workflow is depicted in Fig. 20. The
active layer materials DRCN7T, DR3TSBDT, ZnPc, PDPP4T-2F,

Fig. 19 Scheme of the AI design framework for developing high-performance OPV donor materials. Reproduced with permission103 Copyright r 2021
American Chemical Society.

Fig. 20 Schematic of how material and energy costs are acquired and stages of analysis using ML GAs. Reproduced with permission100 Copyright r
2022 American Chemical Society.
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PCDTBT (donors), and IT-4F, C61 (acceptors) show promise for
delivering positive net energy. The authors concluded that
trained and validated models could accurately predict the
efficiency, stability, and embodied energy of an OPV.

OPV performance can be improved in a variety of ways by
better understanding how smart molecular design can increase
light harvesting on its own. The device’s macroscopic short-circuit
current density is closely tied to light absorption, which is the first
stage in generating an electrical charge. High absorption should,
in principle, lead to strong emission due to the reciprocity
relationship between absorption and emission, lowering nonra-
diative energy losses and benefiting open-circuit voltage. For
identifying structure–absorption relationship, Nelson et al.141

investigated 500 unique organic molecules with DFT and TDDFT
to study absorption strength and unravel structural features that
lead to high absorption strength. The authors found that the
absorption strength calculated experimentally and by TDDFT is in
good agreement for NFAs and fullerene and suggested the use of
TDDFT calculations for further modeling. From DFT optimized
geometries, 6000 molecular descriptors were created, and the
highest correlation with absorption strength was given by ed,max

(experimentally measured maximum molar extinction coeffi-
cient), l1,p (size of the molecule in the direction of maximum
atomic polarizability), and C2SP2 (number of sp2 hybridized
carbon atoms bound with two other carbons). TDDFT and ML
studies found that molecular linearity, planarity, polarizability
and number of P-conjugated carbon atoms also correlate strongly
with absorption strength. Moreover, the authors created RF model
using LOOCV to predict ed, max by using semiempirical extended
tight-binding (xTB) Hamiltonians which is 3000 times faster than
using DFT. The workflow of this study along with prediction
results is represented in Fig. 21.

4. Future scope and challenges

With the growing interest in ML applications for materials
science, significant research is also conducted on OSCs using

ML on available experimental data. With continuous develop-
ment in algorithms and enhancement of computational power,
we may anticipate the trend of ML-OSC research to continue.

As the PCE has achieved acceptable levels in recent years, the
focus has switched from efficiency improvement to stability, which
remains an obstacle to the widespread use of the technology. There
is still a lot we do not know about how environmental stress
variables like temperature, humidity, and oxygen affect the degrad-
ing behavior of materials and, by extension, the durability of solar
cells under the conditions they will be used or stored.142

Various problems faced by researchers in this direction are
discussed here.

4.1. Selection of a suitable training set

The same material is being used in the literature with different
names. The solution is to use the canonical SMILES string after
gathering the dataset.

4.2. Dataset size

OSC datasets are pretty small, and k-fold cross-validation gives
poor results. The solution is to use leave-one-out cross-
validation for small datasets.

4.3. Extrapolation

For OSCs, the available dataset for training ML models is small
and chemical structures are also large and complex. Thus, ML
models often struggle in extrapolation tasks and give poor
results on the dataset that is never seen during the training.
The solution is to use a scaffold-based train-test split or leave
one group out cross-validation.101 If large datasets are available,
feature engineering can improve the extrapolation ability of ML
models.

4.4. Simple input descriptors

To quickly make predictions for previously untested materials
or combinations after saving a machine learning model, it is
important to have quick access to the descriptors used in the

Fig. 21 (a) ML workflow used in this work to draw ed,max predictions. A RF model is trained on TDDFT data and interpolated (validated) on xTB geometries,
including also their corresponding molecular descriptors. To improve the accuracy of the model, energy levels obtained using the GFN2-xTB Hamiltonian
require calibration with TDDFT values. (b) Leave-one-out interpolation of the resulting RF model using three input molecular descriptors (including
calibrated energy levels) and a 64-bit Morgan fingerprint vector. Reproduced with permission141 Copyright, 2022, Royal Society of Chemistry (RSC).
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model. Input descriptors should be easy to calculate and
should be sensitive to the target variable. For example, simple
input descriptors such as ‘Number of Nitrogen and Oxygen’ or
‘Number of valence electrons the molecule has’ could be easily
obtained using RDKit. The problem can be solved by employing
descriptors that are computed immediately from a chemical
structure or SMILES string.

4.5. Inclusion of failure data

During training, the model learns from training data, and
usually failure data are not reported in publications and hence
are not included in experimental datasets. Because of unavail-
ability of the failure dataset, models’ predictions are usually
overestimated and highly deviated. With the inclusion of the
failure dataset, the model can understand device physics in a
much better way and avoid overestimated prediction.

4.6. Active learning techniques

Active learning techniques can guide OSC experimentalists to
find most suitable active materials from vast search space in a
few number of experiments. Active learning could be also used
for finding the most optimal device fabrication parameters
such as ratio of donor and acceptor in the BHJ active layer,
thickness of the active layer, annealing temperature of the
active layer, etc.

4.7. Experimental validation

To verify the results predicted by ML models, experimental
validation is required. Various studies have demonstrated that
ML models predict photovoltaic properties on the test set with
high accuracy. But when predicted on novel materials, the
results deviate by a considerable margin. The reason for this
is that a number of experimental parameters such as D : A ratio,
spin speed, solvent, processing temperature, etc., are not
usually taken as input while training.

The research of ML in the field of OSCs is still in its early
stage. While many models and/or algorithms have been devel-
oped, very few new materials, processes or structures are
demonstrated successful. With the increasing volume of data
accumulated and research experience, the accuracy of models
is anticipated to be improved substantially. We foresee that AI
can truly aid scientists in gathering knowledge of various
domains and to develop promising materials and experimental
parameters for OSCs in the near future.

5. Conclusion and perspectives

Tremendous efforts have been devoted to developing ML
models, which can learn from the existing performance data
of OSCs, to help the researchers to predict and explore the
properties of new organic materials and devices. The accuracy
from the ML prediction has been improved substantially in
many respects of OSCs, including efficiency and stability. ML
models now can also assist and simplify the optimization of
experimental parameters for device fabrication.

On the other hand, as the data size of OSCs is relatively
small, it is very critical to develop ML algorithms and/or design
workflows that can be trained from a small-sized dataset.
Further, new descriptors and structural fingerprints can
improve models’ accuracy and help develop new materials.
Although many reports of ML models demonstrate extrapola-
tion ability, accurate predictions are still very challenging. Such
prediction ability is more important because the results can
indeed save many research resources and accelerate the devel-
opment progress. Most current ‘‘screening’’ functions of the
ML models can only handle chemical structures built from
known blocks and units. Finally, the automation from material
design, synthesis work, experimental data collection to result
analysis is worthy of attention. With a complete research
automated loop, we can explore much larger materials space
in a limited time. The introduction of ML models and AI to the
development of OSCs is still in its infancy. We witnessed the
beginning of this field, and only very limited materials are
developed using the ML models currently. We anticipate that
more organic materials will be synthesized, and the perfor-
mance of OSCs can eventually be pushed to the limit with the
assistance from ML models.
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56 S. Langner, F. Häse, J. D. Perea, T. Stubhan, J. Hauch,
L. M. Roch, T. Heumueller, A. Aspuru-Guzik and
C. J. Brabec, Beyond Ternary OPV: High-Throughput
Experimentation and Self-Driving Laboratories Optimize
Multicomponent Systems, Adv. Mater., 2020, 32, 1907801.

57 R. Olivares-Amaya, C. Amador-Bedolla, J. Hachmann, S. Atahan-
Evrenk, R. S. Sánchez-Carrera, L. Vogt and A. Aspuru-Guzik,
Accelerated computational discovery of high-performance mate-
rials for organic photovoltaics by means of cheminformatics,
Energy Environ. Sci., 2011, 4, 4849–4861.

58 J. Hachmann, R. Olivares-Amaya, S. Atahan-Evrenk,
C. Amador-Bedolla, R. S. Sánchez-Carrera, A. Gold-Parker,
L. Vogt, A. M. Brockway and A. Aspuru-Guzik, The harvard
clean energy project: Large-scale computational screening
and design of organic photovoltaics on the world commu-
nity grid, J. Phys. Chem. Lett., 2011, 2, 2241–2251.

59 J. Hachmann, R. Olivares-Amaya, A. Jinich, A. L. Appleton,
M. A. Blood-Forsythe, L. R. Seress, C. Román-Salgado,

Journal of Materials Chemistry C Review

Pu
bl

is
he

d 
on

 1
9 

O
ct

ob
er

 2
02

2.
 D

ow
nl

oa
de

d 
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

E
du

ca
tio

n 
&

 R
es

ea
rc

h 
Pu

ne
 o

n 
11

/1
9/

20
22

 6
:4

6:
25

 A
M

. 
View Article Online

https://doi.org/10.1039/d2tc03276g


J. Mater. Chem. C This journal is © The Royal Society of Chemistry 2022

K. Trepte, S. Atahan-Evrenk, S. Er, S. Shrestha, R. Mondal,
A. Sokolov, Z. Bao and A. Aspuru-Guzik, Lead candidates
for high-performance organic photovoltaics from high-
throughput quantum chemistry-the Harvard Clean Energy
Project, Energy Environ. Sci., 2014, 7, 698–704.

60 E. O. Pyzer-Knapp, K. Li and A. Aspuru-Guzik, Learning
from the Harvard Clean Energy Project: The Use of Neural
Networks to Accelerate Materials Discovery, Adv. Funct.
Mater., 2015, 25, 6495–6502.

61 S. A. Lopez, B. Sanchez-Lengeling, J. de Goes Soares and
A. Aspuru-Guzik, Design Principles and Top Non-Fullerene
Acceptor Candidates for Organic Photovoltaics, Joule, 2017,
1, 857–870.

62 C. Zanlorenzi and L. Akcelrud, Theoretical studies for
forecasting the power conversion efficiencies of polymer-
based organic photovoltaic cells, J. Polym. Sci., Part B:
Polym. Phys., 2017, 55, 919–927.

63 Y. Imamura, M. Tashiro, M. Katouda and M. Hada, Auto-
matic High-Throughput Screening Scheme for Organic
Photovoltaics: Estimating the Orbital Energies of Polymers
from Oligomers and Evaluating the Photovoltaic Charac-
teristics, J. Phys. Chem. C, 2017, 121, 28275–28286.

64 N. Li, I. McCulloch and C. J. Brabec, Analyzing the effi-
ciency, stability and cost potential for fullerene-free
organic photovoltaics in one figure of merit, Energy
Environ. Sci., 2018, 11, 1355–1361.

65 E. Abbasi Jannat Abadi, H. Sahu and S. M. Javadpour,
M. Goharimanesh, Interpretable machine learning for
developing high-performance organic solar cells, Mater.
Today Energy, 2022, 25, 100969.

66 S. Nagasawa, E. Al-Naamani and A. Saeki, Computer-Aided
Screening of Conjugated Polymers for Organic Solar Cell:
Classification by Random Forest, J. Phys. Chem. Lett., 2018,
9, 2639–2646.

67 Y.-C. Lin, Y.-J. Lu, C.-S. Tsao, A. Saeki, J.-X. Li, C.-H. Chen,
H.-C. Wang, H.-C. Chen, D. Meng, K.-H. Wu, Y. Yang and
K.-H. Wei, Enhancing photovoltaic performance by tuning
the domain sizes of a small-molecule acceptor by side-
chain-engineered polymer donors, J. Mater. Chem. A, 2019,
7, 072–3082.

68 F.-C. Chen, and Virtual Screening of Conjugated Polymers
for Organic Photovoltaic Devices Using Support Vector
Machines and Ensemble Learning, Int. J. Polym. Sci.,
2019, 2019, 4538514, DOI: 10.1155/2019/4538514.

69 D. Padula, J. D. Simpson and A. Troisi, Combining electro-
nic and structural features in machine learning models to
predict organic solar cells properties, Mater. Horiz., 2019,
6, 343–349.

70 H. Sahu, F. Yang, X. Ye, J. Ma, W. Fang and H. Ma,
Designing promising molecules for organic solar cells via
machine learning assisted virtual screening, J. Mater.
Chem. A, 2019, 7, 17480–17488.

71 H. Sahu and H. Ma, Unraveling Correlations between
Molecular Properties and Device Parameters of Organic
Solar Cells Using Machine Learning, J. Phys. Chem. Lett.,
2019, 10, 7277–7284.

72 M. Lee, Insights from Machine Learning Techniques for
Predicting the Efficiency of Fullerene Derivatives-Based
Ternary Organic Solar Cells at Ternary Blend Design, Adv.
Energy Mater., 2019, 9, 1900891.

73 M.-H. Lee, A Machine Learning–Based Design Rule for
Improved Open-Circuit Voltage in Ternary Organic Solar
Cells, Adv. Intell. Syst., 2010, 2, 1900108.

74 Y. Lin, J. Wang, Z. G. Zhang, H. Bai, Y. Li, D. Zhu and
X. Zhan, An electron acceptor challenging fullerenes for
efficient polymer solar cells, Adv. Mater., 2015, 27, 1170–1174.

75 W. Zhao, S. Li, H. Yao, S. Zhang, Y. Zhang, B. Yang and
J. Hou, Molecular Optimization Enables over 13% Effi-
ciency in Organic Solar Cells, J. Am. Chem. Soc., 2017, 139,
7148–7151.

76 P. Cheng, G. Li, X. Zhan and Y. Yang, Next-generation
organic photovoltaics based on non-fullerene acceptors,
Nat. Photonics, 2018, 12, 131–142.

77 J. Wang, P. Xue, Y. Jiang, Y. Huo and X. Zhan, The
principles, design and applications of fused-ring electron
acceptors, Nat. Rev. Chem., 2022, 6, 614–634.

78 C. Yan, S. Barlow, Z. Wang, H. Yan, A. K. Y. Jen,
S. R. Marder and X. Zhan, Non-fullerene acceptors for
organic solar cells, Nat. Rev. Mater., 2018, 3, 18003.

79 Y. Wu, J. Guo, R. Sun and J. Min, Machine learning for
accelerating the discovery of high-performance donor/
acceptor pairs in non-fullerene organic solar cells, npj
Comput. Mater., 2020, 6, 120.

80 M. H. Lee, Robust random forest based non-fullerene
organic solar cells efficiency prediction, Org. Electron.,
2020, 76, 105465.

81 M. H. Lee, Identifying correlation between the open-circuit
voltage and the frontier orbital energies of non-fullerene
organic solar cells based on interpretable machine-
learning approaches, Sol. Energy, 2022, 234, 360–367.

82 K. Kranthiraja and A. Saeki, Experiment-Oriented Machine
Learning of Polymer:Non-Fullerene Organic Solar Cells,
Adv. Funct. Mater., 2021, 31, 2011168.

83 Y. Miyake and A. Saeki, Machine Learning-Assisted Devel-
opment of Organic Solar Cell Materials: Issues, Analyses,
and Outlooks, J. Phys. Chem. Lett., 2021, 12, 12391–12401.

84 K. Kranthiraja and A. Saeki, Machine Learning-Assisted
Polymer Design for Improving the Performance of Non-
Fullerene Organic Solar Cells, ACS Appl. Mater. Interfaces,
2022, 14, 28936–28944.

85 Y. Miyake, K. Kranthiraja, F. Ishiwari and A. Saeki,
Improved Predictions of Organic Photovoltaic Perfor-
mance through Machine Learning Models Empowered by
Artificially Generated Failure Data, Chem. Mater., 2022, 34,
6912–6920.

86 T. Hao, S. Leng, Y. Yang, W. Zhong, M. Zhang, L. Zhu,
J. Song, J. Xu, G. Zhou, Y. Zou, Y. Zhang and F. Liu, Capture
the high-efficiency non-fullerene ternary organic solar cells
formula by machine-learning-assisted energy-level align-
ment optimization, Patterns, 2021, 2, 100333.

87 P. Malhotra, S. Biswas, F.-C. Chen and G. D. Sharma,
Prediction of non-radiative voltage losses in organic solar

Review Journal of Materials Chemistry C

Pu
bl

is
he

d 
on

 1
9 

O
ct

ob
er

 2
02

2.
 D

ow
nl

oa
de

d 
by

 I
nd

ia
n 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

E
du

ca
tio

n 
&

 R
es

ea
rc

h 
Pu

ne
 o

n 
11

/1
9/

20
22

 6
:4

6:
25

 A
M

. 
View Article Online

https://doi.org/10.1155/2019/4538514
https://doi.org/10.1039/d2tc03276g


This journal is © The Royal Society of Chemistry 2022 J. Mater. Chem. C

cells using machine learning, Sol. Energy, 2021, 228,
175–186.

88 A. Mahmood and J.-L. Wang, A time and resource efficient
machine learning assisted design of non-fullerene small
molecule acceptors for P3HT-based organic solar cells and
green solvent selection, J. Mater. Chem. A, 2021, 9,
15684–15695.

89 A. Mahmood, A. Irfan and J.-L. Wang, Machine learning and
molecular dynamics simulation-assisted evolutionary design
and discovery pipeline to screen efficient small molecule
acceptors for PTB7-Th-based organic solar cells with over
15% efficiency, J. Mater. Chem. A, 2022, 10, 4170–4180.

90 A. Mahmood, A. Irfan and J. Wang, Developing Efficient
Small Molecule Acceptors with sp2-Hybridized Nitrogen at
Different Positions by Density Functional Theory Calcula-
tions, Molecular Dynamics Simulations and Machine
Learning, Chem. – Eur. J., 2022, 28, e202103712.

91 X. Liu, Y. Shao, T. Lu, D. Chang, M. Li and W. Lu,
Accelerating the discovery of high-performance donor/
acceptor pairs in photovoltaic materials via machine learn-
ing and density functional theory, Mater. Des., 2022,
216, 110561.

92 S. A. Lopez, E. O. Pyzer-Knapp, G. N. Simm, T. Lutzow,
K. Li, L. R. Seress, J. Hachmann and A. Aspuru-Guzik, The
Harvard organic photovoltaic dataset, Sci. Data, 2016,
3, 160086.

93 E. O. Pyzer-Knapp, G. N. Simm and A. Aspuru Guzik, A
Bayesian approach to calibrating high-throughput virtual
screening results and application to organic photovoltaic
materials, Mater. Horiz., 2016, 3, 226–233.

94 A. Paul, A. Furmanchuk, W. Liao, A. Choudhary and
A. Agrawal, Property Prediction of Organic Donor Mole-
cules for Photovoltaic Applications Using Extremely Ran-
domized Trees, Mol. Inf., 2019, 38, 1900038.

95 N. Meftahi, M. Klymenko, A. J. Christofferson, U. Bach,
D. A. Winkler and S. P. Russo, Machine learning property
prediction for organic photovoltaic devices, npj Comput.
Mater., 2020, 6, 166.

96 W. Sun, Y. Zheng, K. Yang, Q. Zhang, A. A. Shah, Z. Wu,
Y. Sun, L. Feng, D. Chen, Z. Xiao, S. Lu, Y. Li and K. Sun,
Machine learning–assisted molecular design and effi-
ciency prediction for high-performance organic photovol-
taic materials, Sci. Adv., 2019, 5, eaay4275.

97 D. Padula and A. Troisi, Concurrent Optimization of
Organic Donor–Acceptor Pairs through Machine Learning,
Adv. Energy Mater., 2019, 9, 1902463.

98 T. W. David, H. Anizelli, P. Tyagi, C. Gray, W. Teahan and
J. Kettle, Using Large Datasets of Organic Photovoltaic Per-
formance Data to Elucidate Trends in Reliability Between
2009 and 2019, IEEE J. Photovoltaics, 2019, 9, 1768–1773.

99 T. W. David, H. Anizelli, T. J. Jacobsson, C. Gray,
W. Teahan and J. Kettle, Enhancing the stability of organic
photovoltaics through machine learning, Nano Energy,
2020, 78, 105342.

100 T. W. David and J. Kettle, Design for a Sustainability
Approach to Organic Solar Cell Design: the Use of Machine

Learning to Quantify the Trade-off between Performance,
Stability, and Environmental Impact, J. Phys. Chem. C,
2022, 126, 4774–4784.

101 Z.-W. Zhao, M. del Cueto and A. Troisi, Limitations of
machine learning models when predicting compounds
with completely new chemistries: possible improvements
applied to the discovery of new non-fullerene acceptors,
Digital Discovery, 2022, 1, 266–276.

102 M.-H. Lee, Performance and Matching Band Structure
Analysis of Tandem Organic Solar Cells Using Machine
Learning Approaches, Energy Technol., 2020, 8, 1900974.

103 W. Sun, Y. Zheng, Q. Zhang, K. Yang, H. Chen, Y. Cho,
J. Fu, O. Odunmbaku, A. A. Shah, Z. Xiao, S. Lu, S. Chen,
M. Li, B. Qin, C. Yang, T. Frauenheim and K. Sun, Artificial
Intelligence Designer for Highly-Efficient Organic Photo-
voltaic Materials, J. Phys. Chem. Lett., 2021, 12, 8847–8854.

104 B. L. Greenstein and G. R. Hutchison, Organic Photovoltaic
Efficiency Predictor: Data-Driven Models for Non-Fullerene
Acceptor Organic Solar Cells, J. Phys. Chem. Lett., 2022, 13,
4235–4243.

105 W. Sun, M. Li, Y. Li, Z. Wu, Y. Sun, S. Lu, Z. Xiao, B. Zhao
and K. Sun, The Use of Deep Learning to Fast Evaluate
Organic Photovoltaic Materials, Adv. Theory Simul., 2019,
2, 1800116.

106 G. J. Moore, O. Bardagot and N. Banerji, Deep Transfer
Learning: A Fast and Accurate Tool to Predict the Energy
Levels of Donor Molecules for Organic Photovoltaics, Adv.
Theory Simul., 2022, 5, 2100511.

107 D. Weininger, SMILES, a chemical language and informa-
tion system. 1. Introduction to methodology and encoding
rules, J. Chem. Inf. Model., 1988, 28, 31–36.

108 A. H. Vo, T. R. Van Vleet, R. R. Gupta, M. J. Liguori and
M. S. Rao, An Overview of Machine Learning and Big Data for
Drug Toxicity Evaluation, Chem. Res. Toxicol., 2020, 33, 20–37.

109 J. Schmidt, M. R. G. Marques, S. Botti and M. A. L.
Marques, Recent advances and applications of machine
learning in solid-state materials science, npj Comput.
Mater., 2019, 5, 83.

110 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, A. Müller, J. Nothman,
G. Louppe, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
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