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A B S T R A C T   

One of the major hurdles that are preventing organic solar cells (OSCs) from leading the efficiency chart is non- 
radiative voltage loss (ΔVNR). So far, however, not much effort is made to predict voltage losses and unravel the 
correlation of losses with electronic and structural descriptors. From the literature, we create a dataset consisting 
of 154 unique donor:acceptor combinations with reported ΔVNR. The dataset includes information about frontier 
molecular orbitals (FMO), optical bandgap (Eg), molecular descriptors, and molecular fingerprints. Four machine 
learning (ML) algorithms (random forest regressor, gradient boosting regressor, support vector regressor, and 
artificial neural network) are used to predict non-radiative voltage loss and the results obtained are compared on 
the basis of Pearson rs, root mean squared errors, and mean absolute percentage errors. Best results are obtained 
with gradient boosting regressor by using FMO + Eg + RDKit descriptors (Pearson r = 0.859) and FMO + Eg +
MACCS fingerprints (Pearson r = 0.857). We have also applied these ML models by using only molecular de-
scriptors and only molecular fingerprints and got impressive results (Pearson r = 0.78 and 0.726). These results 
indicate that ML models can be effectively used for the prediction of ΔVNR and virtual screening of promising 
donor:acceptor combinations with reduced ΔVNR.   

1. Introduction 

Organic solar cells (OSCs) have shown remarkable progress in the 
last decade and have emerged as a low-cost alternative to conventional 
solar technologies (Almora et al., 2021; Cui et al., 2020; Karki et al., 
2021; Sun et al., 2019b). In recent years with the emergence of non-
fullerene small molecule acceptor, particularly Y-series small molecules 
(Li et al., 2020; Yuan et al., 2019b), the highest power conversion effi-
ciency (PCE) achieved by single-junction OSCs prepared with polymer 
donor:non-fullerene acceptor (NFA) is more than 18% (Cui et al., 2020; 
Liu et al., 2020a; Qin et al., 2021). It is reported that the PCE of OSCs can 
be increased upto 20% by the selection of appropriate donors and ac-
ceptors with complementary absorption and matched frontier molecular 
orbitals (FMOs) (Karki et al., 2021; Upama et al., 2020). Literatures have 
estimated the realistic PCE limit for OSC as a function of optical gap and 
have shown that the upper limit for realistic PCE is approximately 20% 
(Azzouzi et al., 2018; Benduhn et al., 2017), considering a device with 
an external quantum efficiency (EQE) of 90% and a fill factor (FF) of 
80%. Comparing with other technologies that are leading the efficiency 

chart, such as perovskites solar cells, OSCs have competent short circuit 
current density (JSC) and FF but lags in the case of open-circuit voltage 
(Voc). The lag in Voc is due to higher non-radiative voltage loss (ΔVNR), 
leading to lower PCEs of OSCs. To achieve the milestone of crossing 20% 
PCE, ΔVNR needs to be reduced (Azzouzi et al., 2018; Vandewal et al., 
2020). 

It is worth looking into the factors that govern ΔVNR and explore how 
the structural variations (Vandewal et al., 2018) of active materials 
employed in OSCs influence ΔVNR. The energy materials that we are 
using today in OSCs are not the most optimal ones, and there exists a 
large room for improvement. To further enhance the PCE of OSCs, we 
need to discover new active materials for suitable donor:acceptor (D:A) 
combination with reduced ΔVNR (Vandewal et al., 2020). Moreover, for 
an efficient OSC, D:A combination should have appropriately aligned 
energy levels, complementary absorption spectra, and balanced charge 
carrier mobility (Pradhan et al., 2020). Today, exploring new materials 
with less ΔVNR is not cost-effective because new materials need to be 
synthesized, followed by cell fabrication for getting EQE or electrolu-
minescence (EL) spectra. A more straightforward approach for 
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narrowing down the search for potential D:A combination is to use 
machine learning (ML) algorithms by using descriptors available in the 
literatures, such as FMOs, optical bandgap (Eg), molecular descriptors, 
and molecular fingerprints. 

Several efforts have been made by utilizing ML models on OSCs to 
explore new active materials and understand the hidden information 
within chemical structures. Most of the ML-based research in OSCs is 
employed for the prediction of PCEs (Kranthiraja and Saeki, 2021; Lee, 
2019, 2020b,c; Lopez et al., 2017; Nagasawa et al., 2018; Olivares- 
Amaya et al., 2011; Padula et al., 2019; Padula and Troisi, 2019; Peng 
and Zhao, 2019; Pyzer-Knapp et al., 2016; Sahu et al., 2018, 2019; Sahu 
and Ma, 2019; Sui et al., 2019; Sun et al., 2019c; Wu et al., 2020; Zhao 
et al., 2020), FMOs (Mesta et al., 2019; Paul et al., 2019; Pereira et al., 
2017), JSC (Pokuri et al., 2019; Rodríguez-Martínez et al., 2021), and 
VOC (Lee, 2020a). Descriptors for each set of problems are chosen based 
on the domain knowledge. Till now, ML is not utilized for the prediction 
of ΔVNR as no suitable dataset is present with reported ΔVNR values. As 
ΔVNR is considered one of the major factors influencing VOC of the solar 
cells (Babics et al., 2019; Liu et al., 2020b), ML approaches can help 
predict ΔVNR and virtual screening of suitable D:A combinations with 
reduced ΔVNR. 

We are very much interested in developing ML models for predicting 
ΔVNR by using electronic descriptors (FMO and Eg), structural de-
scriptors (molecular descriptors and molecular fingerprints), and a 
combination of both. Throughout this study, we use only descriptors 
that are easily accessible. In this work, we apply supervised ML algo-
rithms, including random forest (RF), gradient boosting (GB), support 
vector regression (SVR), and artificial neural network (ANN). The results 
imply gradient boosting regressor generated more accurate predictions. 
In order to investigate the robustness of each model, we add 50 manu-
ally calculated ΔVNR (by digitizing the reported EQE curves) in the base 
dataset and again obtain impressive results. We believe that the ML al-
gorithms reported herein can benefit and speed up the development of 
high-performance organic materials for solar applications. 

2. Non-Radiative voltage loss (ΔVNR) 

The difference between the photon’s energy and product of 
elementary charge (q) with maximum power point voltage is defined as 
the total energy loss per absorbed photon (Vandewal et al., 2018). 
Herein, we define the lower limit of this energy loss as ΔEloss = Eg − qVoc 
(Nikolis et al., 2017), where Eg is the optical bandgap of the donor or 
acceptor material used in the active bulk heterojunction (BHJ) layer 
whichever is lower, q is the elementary charge and VOC is the voltage at 
open-circuit. Fig. 1 represents voltage losses in OSCs. ΔEloss can be 
further divided into losses due to charge transfer (ΔECT = Eg - ECT), 
radiative recombination losses (ΔVR = ECT/q - VR), and non-radiative 
recombination losses (ΔVNR = VR - VOC). Out of these three losses, 
ΔVNR is the most dominating one and is considered to be the critical 
factor in determining the PCE of OSCs (Azzouzi et al., 2018; Eisner et al., 
2019; Riede et al., 2021). Now ΔVNR is one of the hot research topics and 
several efforts have been made in understanding the cause of ΔVNR with 
many theory-based models and experimental works. NFA with accept-
or–donor-acceptor (A-D-A) structures shows excellent performance in 
photovoltaic applications. A-D-A structure neutralizes all the disad-
vantages that fullerene pursues (Sun et al., 2019b; Ye et al., 2020), 
thereby reducing ΔVNR. In order to cross the 20% PCE mark, ΔVNR in 
NFA based OSCs needs to be further reduced to 0.15 eV, while main-
taining high EQE and FF (Karki et al., 2021; Liu et al., 2020b; Vandewal 
et al., 2020). The energy of the charge transfer state (ECT) plays a critical 
role in understanding ΔVNR as they are the charge separation and 
recombination centers at the D:A interface (Chen and Brédas, 2018; 
Veldman et al., 2009; Xie et al., 2018). ECT can be approximated by 
interfacial bandgap (Ei) which is described as the gap between HOMO of 
Donor and LUMO of acceptor (Azzouzi et al., 2019). To use only easily 
accessible descriptors, we have used Ei in place of ECT and (Eg – Ei) in 

place of ΔECT. It is important to note that instead of using ΔVNR, we have 
defined percentage non-radiative voltage loss (%ΔVNR) as our target 
variable. 

%ΔVNR =
(
ΔVNR/

(
Eg/q

) )
*100 (1) 

While exploring our manually collected dataset, a good trend is 
observed between Ei and %ΔVNR, but no correlation is observed between 
Ei and PCE (Fig. 2a and 2b). Meanwhile, (Eg – Ei) shows a good trend 
with both %ΔVNR and PCE (Fig. 2c and 2d). In Fig. 2a, it is clearly 
observed that with increasing ECT, %ΔVNR gets reduced, and VOC be-
comes more closer to the radiative limit VR. Moreover in Fig. 2c, with 
reduced Eg – Ei, %ΔVNR gets reduced, which can be attributed to 
increased electroluminescence spectra due to hybrid local exciton 
charge transfer (LE-CT) states (Classen et al., 2020; Eisner et al., 2019; 
Vandewal et al., 2020; Zhang et al., 2020). All the trends observed are 
consistent with those reported in the literature (Benduhn et al., 2017). In 
Fig. 2d, it is interesting to see that all the devices with PCE greater than 
15% have greater Ei than Eg. 

ΔVNR can be reduced by making chemical modifications in photo-
active materials (Hong et al., 2019; Luo et al., 2020; Sun et al., 2019a; Ye 
et al., 2020; Yuan et al., 2019a). Similar work is done by Cui et al., and 
their findings reveal that chlorinated NFA provides higher open-circuit 
voltage compared to its fluorinated counterpart (Cui et al., 2019). 
Although chlorinated NFA shows downshifted LUMO levels compared to 
fluorinated NFA, a higher voltage in chlorinated NFA corresponds to low 
ΔVNR. 

Due to low dielectric constant of organic materials, their binding 
energy is relatively high and a reasonable ΔEoffset (driving force) is 
required for efficient charge separation (Nakano et al., 2019; Xie and 
Wu, 2020). Fu et al. used two (PDI)-based small molecule acceptors and 
four polymer donors to study the effect of ΔEoffset on energy loss (Fu 
et al., 2018). Findings reveal that both radiative loss (due to CT ab-
sorption) and ΔVNR gets reduced with decreasing ΔEoffset. 

Liu et al. observed a low ΔVNR of 0.2 V and EQEEL of 2.1 X 10-4 with 
BDT-ffBX-DT:SFPDI solar cell (Liu et al., 2018). Such a high EQEEL is 
explained by either absence of charge transfer state or difference be-
tween singlet state and charge transfer state being negligible. 

Classen et al. studied many OSC blends and analysed the effect of 

Fig. 1. Voltage losses in OSCs. Eg, ECT, VR, VOC and q are the optical bandgap of 
the donor or acceptor material used in the active bulk heterojunction (BHJ) 
layer whichever is lower, energy of charge transfer state, open circuit voltage in 
the radiative limit, voltage at open-circuit, and the elementary charge. The loss 
occurred in the charge transfer process is represented by ΔECT/q, and the rest 
are recombination losses. Recombination losses are further divided into losses 
due to radiative recombination (ΔVR) and non-radiative recombination (ΔVNR). 
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energy level offset on ΔVNR (Classen et al., 2020). The study reveals that 
the key factor responsible for the reduction in ΔVNR is negligible energy 
level offset (ΔEoffset). Results show very clear trend of decreasing ΔVNR 
with a better-aligned HOMO offset. At very low HOMO offset, hybrid 
states are formed instead of CT states, leading to a higher correlation 
between ΔVNR vs HOMO offset than ΔVNR vs ECT. The findings reveal 
that at negligible HOMO offset (ΔEHOMO), exciton splitting lifetime is 
around 1300 ps, which is greater than exciton lifetime of pristine ma-
terial. Thus, other than small ΔEoffset , exciton lifetime must be longer 
than exciton splitting lifetime so that the electroluminescence quantum 
efficiency is also high and leads to smaller ΔVNR. 

Many other studies have been performed to understand ΔVNR origin 
and unravel its correlation with various associated parameters such as 
molecular orientation at the D:A interface (Chen et al., 2016; Ran et al., 
2017), molecular weight of polymers (Baran et al., 2015), isotopic 
substitution (Chen and Brédas, 2018), energetic driving force (Karki 
et al., 2020; Liu et al., 2016), and device processing (Tuladhar et al., 
2016). 

2.1. Calculating ΔVNR 

2.1.1. Electroluminescence external quantum efficiency (EQEEL) 
EQEEL is defined as the ratio of the number of photons emitted from 

the device to the number of electrons injected into the device. ΔVNR can 
be calculated from the well-established relation (Rau, 2007; Rau et al., 
2014) 

ΔVNR =
kBT

q
ln
(

1
EQEEL

)

(2)  

2.1.2. Photovoltaic external quantum efficiency (EQEPV) 
We can calculate the radiative limit of a solar cell (VR) using reci-

procity relation between absorption and emission. VR is the open-circuit 
voltage assuming all the recombination events in the device are radia-
tive, and ΔVNR is equal to zero. The difference between VR and actual 

calculated VOC corresponds to ΔVNR (Vandewal et al., 2018). VR is 
calculated as (Rau, 2007; Rosenthal et al., 2019) 

VR =
kT
q

In
(

Jsc

Jrad
o

+ 1
)

=
kT
q

ln
(

q
∫∞

0 EQEPV(E)∅AM1.5G(E)dE
q
∫∞

0 EQEPV(E)∅BB(E)dE
+ 1

)

(3)  

ΔVNR = VR − − VOC (4)  

3. Data gathering 

Data is manually collected from the literature, containing 154 unique 
D:A combination with 46 distinct donors and 79 distinct acceptors. All 
the collected information is reported in Table S1 (Supplementary In-
formation). Our dataset has 6 all-small-molecule OSCs, 5 all-polymer 
OSCs, and the remaining 143 are polymer donor:small molecule 
acceptor OSCs. To demonstrate that our dataset consists of a wide va-
riety of donor and acceptor materials with diverse chemical structure, 
we have calculated similarity scores by using Morgan fingerprints (nbits 
= 1024, r = 2) separately for donors (Number of compound pairs =
1035) and acceptors (Number of compound pairs = 3081) as shown in 
Fig. 3. By default, Tanimoto distance is used to generate similarity scores 
in RDKit. 

Chemical structures of all donor and acceptor materials were drawn 
on ChemDraw software, and their SMILES codes were generated. Using 
the SMILES code of distinct donor and acceptor materials, their molec-
ular descriptors and molecular fingerprints were generated. Today 
various open-source libraries are available freely for generating molec-
ular descriptors and fingerprints (Broad and Bindner, 2013; Dong et al., 
2015; Hong et al., 2008; Moriwaki et al., 2018; Tetko et al., 2005). We 
have used two types of descriptors (RDKit and Mordred) and four types 
of fingerprints(Extended, MACCS, PubChem, Morgan) (Chen, 2019) for 
generating datasets for both donors and acceptors using SMILES codes. 

The distribution of ΔVNR and %ΔVNR is shown in Fig. 4a and 4b. It is 
worth noting that %ΔVNR has better Gaussian distribution than ΔVNR 
and the calculated mean and median of ΔVNR and %ΔVNR are 0.280, 

Fig. 2. Correlations with %ΔVNR. (a) represents that with an increase in ECT, %ΔVNR is reduced. The increase in VR explains the reduction in %ΔVNR and when ECT is 
further increased, VOC becomes more closer to VR. Although ECT is an essential descriptor concerning %ΔVNR, it shows no clear trend with PCE as seen in (b). (c) 
represents that with an increase in ΔECT, %ΔVNR is also increased and causes reduced VOC. Unlike ECT, ΔECT shows a clear trend with both %ΔVNR and PCE, as seen 
in (d). 
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Fig. 3. Similarity scores of (a) donor molecules and (b) acceptor molecules generated by using Morgan Fingerprints (nbits = 1024, r = 2). Similarity scores represent 
that our dataset consists of diverse chemical structures, making it a suitable ML model dataset. 

Fig. 4. Distribution of (a) Non-Radiative Voltage Loss (ΔVNR) and (b) Percentage Non-Radiative Voltage Loss (%ΔVNR). The mean and median of ΔVNR and %ΔVNR 
are 0.280, 0.267, and 19.041%, 18.153%. 

Fig. 5. Scatter plot between PCE and %ΔVNR. No clear trend is observed in the plot, but it is essential to highlight that in the highest PCE range (greater than 15%), 
%ΔVNR is still high (15% to 20%). 
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0.267, and 19.041%, 18.153%, respectively. 
It is also interesting to study the relation between %ΔVNR and PCE of 

the collected dataset. The scatter plot between PCE and %ΔVNR is given 
in Fig. 5, indicating that PCE does not depend solely on %ΔVNR. It is 
observed that in the highest PCE range (greater than 15%), %ΔVNR is 
still approximately 15%-20%, and it needs to be reduced for further 
enhancement in PCE. (Fig. 5 shows clearly that a low %ΔVNR is not 
inherently high PCE, as many other factors influence the charge carrier 
dynamics and PCE.) 

4. List of descriptors 

4.1. Offset 

Efforts have been made to understand the change in ΔVNR with 
varying HOMO offset and LUMO offset (Baran et al., 2016; Liu et al., 
2016). Saito et al. studied combination of PTB7-Th with nine different 
acceptors (Saito et al., 2020). The findings show that blends with 
negligible energy offset lead to increased radiative recombination rates, 
thus reducing ΔVNR. Gao et al. also proposed low energy offset between 
donor and acceptor molecular states to be the thumb rule for reduced 
ΔVNR (Qian et al., 2018). 

4.2. Energy of charge transfer state (ECT) 

ECT is approximated by the gap between DHOMO and ALUMO and is 
referred to as Interfacial Bandgap (Ei) (Azzouzi et al., 2019). Vandewal 
et al. studied 170 different fullerene and non-fullerene combinations and 
revealed a clear trend between ECT and ΔVNR (Benduhn et al., 2017; 
Vandewal, 2016). However, the observed trend is considerably scat-
tered, which indicates the existence of hidden parameters that are yet to 
be explored. 

4.3. Bandgap (Eg) 

Various definitions of Eg have been used in the literature such as Eg 
absorbance onset, Eg intersection (crossing point of absorption and 
emission spectra) (Cui et al., 2019, 2020; Karki et al., 2019; Luo et al., 
2019; Vandewal et al., 2018; Xie et al., 2019a; Zhang et al., 2019; Zhou 
et al., 2019), Eg onset of EQE spectra (Zhang et al., 2020), and Eg edge 
from EQE spectra (Xie et al., 2019b). Throughout this study, we have 
defined Eg as optical bandgap of the donor or acceptor material used in 
the active bulk heterojunction (BHJ) layer whichever is lower, as it 
provides a straightforward comparison between the results in the 
literature. 

4.4. Δect 

It was understood that an energetic penalty in the form of ΔECT = Eg 
– ECT is required for the efficient generation of free charge carriers 
(Grancini et al., 2013; Jailaubekov et al., 2013; Vandewal, 2016). Our 
definition of ΔECT is (Eg – (DHOMO - ALUMO)), the driving energy for 
dissociation of charge transfer state. Surprisingly, with such low 
dielectric constant materials, all recent OSCs with PCE greater than 15 % 
have zero ΔECT (Eisner et al., 2019; Nikolis et al., 2017; Vandewal et al., 
2020; Yu et al., 2019). Flurin et al. used materials with different ener-
getic offsets to show that in very low offset combinations, ES1 (energy of 
lowest singlet excited state) and ECT are close to each other (Eisner et al., 
2019). Further, when the offset is sufficiently small, hybridization oc-
curs, leading to increased electroluminescence and reduced ΔVNR. 
Therefore, ES1, CT = ES1 - ECT is defined as the driving energy for charge 
transfer state dissociation. Azzouzi et al. also performed a study on the 
potential change in VOC and found out that ΔECT is the most sensitive 
variable followed by ECT (Azzouzi et al., 2018). 

4.5. Molecular descriptors and fingerprints 

Simplified molecular input line entry system (SMILES) (Weininger, 
1988) is used to define chemical structures in a machine-readable 
format (ASCII strings). Two molecular descriptor sets (RDKit and Mor-
dred) and four molecular fingerprint sets (Extended, MACCS, PubChem, 
and Morgan) were generated using SMILES strings for polymer mono-
mer and small molecule materials. 

4.5.1. Molecular descriptor Set 
To construct an efficient machine learning model, a fair collection of 

molecular descriptors is required to represent the information encoded 
within the chemical structures rather than SMILES codes. Molecular 
descriptors provide the information encoded within the molecule in 
numerical form, which is machine-readable. RDKit descriptors (196 
bits) were calculated from ChemDes (web-based platform) (Dong et al., 
2015), and Mordred descriptors (1613 bits) were calculated using the 
Mordred python library (Moriwaki et al., 2018). We have used only 1D 
and 2D descriptors throughout this study. 

4.5.2. Molecular fingerprint Set 
A molecular fingerprint is an array of binary bits representing a 

predefined structural feature. If the predefined structure is present, bit is 
set to 1 (ON) otherwise 0 (OFF). The more the number of bits, the more is 
structural information. Four fingerprints have been used in this study; 
(a) Extended fingerprint (1024 bits) is an extended version of Chemistry 
Development Kit (CDK) fingerprint (Steinbeck et al., 2003) where 
additional bits describe ring features, (b) Molecular ACCess System 
(MACCS) key (166 bits) (Durant et al., 2002), (c) PubChem fingerprints 
(881 bits) (Kim et al., 2016), and (d) Morgan fingerprint (1024 bits) 
(Rogers and Hahn, 2010). 

The correlation matrix of the reported descriptors in Fig. 6 shows 
that none of the descriptors directly correlate with our target variable 
%ΔVNR. The highest correlation of %ΔVNR is observed with Loffset (0.53) 
and Ei (-0.55), while the least correlation is observed with Eg (-0.18). 

5. Prediction of %ΔVNR using Machine learning 

Workflow for the prediction of %ΔVNR by using ML algorithms is 
represented in Fig. 7. We have studied various combinations of 
descriptor sets consisting of FMO, Eg, molecular descriptors, and mo-
lecular fingerprints to predict %ΔVNR. Extensive feature engineering is 
required, as our data involved in our work is small and sparse. Highly 
dispersed FMO and Eg values are reported in literatures, so we trans-
formed all reported values with the median for each distinct donor and 
acceptor. Feature engineering involves steps to convert the raw data into 
valuable data that can be fed directly to ML models. In the descriptor 
dataset (RDKIT and Mordred), we removed all the features with zero 
standard deviation, followed by the removal of features with a corre-
lation coefficient (r) greater than 0.8. While for the fingerprint dataset, 
all the irrelevant features were removed by setting a variance threshold 
of 0.8. By this variance threshold, all the features with zero standard 
deviation were also removed. Finally, prepared datasets were scaled 
with a standard scaler and fed to ML models. 

5.1. ML models 

We have used four supervised ML approaches, which are accessible 
from Scikit-Learn python package(Pedregosa et al., 2011). A detailed 
description of all ML algorithms is beyond this paper’s scope, so a short 
description of them is given below. 

5.1.1. Random forest (RF) regressor 
In RF, various decision trees are formed randomly and are called the 

base learners. By a method called ‘Bagging’, random sets of row and 
feature are selected with replacement for making decision trees. 
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Separately each decision tree has high variance, but when they all are 
combined in parallel, the resultant variance is reduced. The final result is 
the mean of the outputs from all decision trees. 

5.1.2. Gradient boosting (GB) regressor 
In GB also, various decision trees are formed but not randomly 

instead sequentially. With sequential trees getting formed, errors made 
in the previous stage get rectified to improve the model’s overall per-
formance. By sequential formation of trees, several weak learners are 
combined to make a strong learner. 

5.1.3. Support vector regression (SVR) 
To provide a low variance model, SVR provides flexibility to define 

acceptable error limits in the model. This limit helps in finding the most 
appropriate hyperplane for high-dimensional data. Parameters that can 
be tuned are ‘C’ and ‘epsilon’. ‘C’ is the regularization parameter and 
‘epsilon’ is associated with the region in which no penalty is applied in 
the training loss function. In our model, tuning of both these parameters 
is performed using GridSearchCV. 

5.1.4. Artificial neural network (ANN) 
It is a set of many layers connected with each other forming a neural 

network. ANN is applied using a Multilayer perceptron (MLP) regressor. 
It consists of input layer, output layer, and hidden layer sandwiched 
between them with a user-defined number of neurons. In our model, we 
have selected number of neurons equals to number of features left after 
performing feature engineering. 

6. Results and discussion 

All ML techniques (RF, GB, SVR, ANN) are accessed from the Scikit- 
Learn python package. For RF and GB model, default parameters were 
used. For SVR model, hyperparameter tuning was performed by tuning 
values of ‘C’ and ‘epsilon’ using GridSearchCV. For ANN, we have used 
one hidden layer with number of neurons equals to the number of fea-
tures left after feature engineering. As our dataset is small (154 rows), 
we have used leave-one-out cross-validation (LOOCV) technique to 
evaluate the results. A comparison between the models is made by using 
statistical metrics such as Pearson correlation coefficient (r), root mean 
squared error (RMSE), and mean absolute percentage error (MAPE) for 
each dataset. Equations of these metrics are listed in Table 1. 

First, we tested the model by using FMO descriptors (DHOMO, DLUMO, 
AHOMO, ALUMO, Loffset, HOffset, Ei), Eg, and various descriptor/fingerprint 
datasets generated by us. The results obtained are summarized in 
Table 2. 

Out of all the datasets, the best results were obtained by GB model. 
Set 1a performed well (r = 0.797), and the results were considerably 
improved when combined with molecular descriptors (Set 1b, 1c) and 
molecular fingerprints (Set 1d-1 g). The descriptor set with RDKit (r =
0.859) and Mordred (r = 0.85) gave approximately equal results by the 
GB model. In all the sets (1a – 1 g), GB and RF model results are 
approximately equal. Although the number of descriptors in RDKit 
dataset (196 bits) is much less than Mordred dataset (1613 bits), similar 
results indicate that all the additional descriptors in Mordred dataset do 
not hold any relevant information related to %ΔVNR. But in the case of 

Fig. 6. Pearson correlation matrix of electronic descriptors and %ΔVNR for getting an initial insight of the collected data. None of the descriptors is highly correlated 
with %ΔVNR, indicating that ML models need to understand the complex relationships between the descriptors for better prediction of %ΔVNR. 
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SVR model, the dataset with Mordred descriptors (r = 0.803) performed 
better than dataset with RDKit descriptors (r = 0.777). Results interpret 
the better performance of SVR model with higher dimensional data in 
the case of molecular descriptors. In case of fingerprints, dataset with 
MACCS fingerprint performed best (r = 0.857) followed by dataset with 
Extended fingerprints (r = 0.85). It should be noted that out of all fin-
gerprints, MACCS contains the least number of bits (166 bits). Such 
results indicate that fingerprints with a much higher number of bits 
contain information that is irrelevant concerning %ΔVNR. Out of all the 
sets (1a – 1 g), ANN has not performed best, and the reason can be 
attributed to less amount of data, which is not enough to train neural 
networks to understand complex relations completely. It is also worth 

noting that all-polymer and all-small-molecule OSCs also fit well into the 
best performing models, as shown in Fig. 8 below. 

We further examined ML models by considering only descriptor sets 
(Set 2a,2b) and only fingerprint sets (Set 2c-2f) as summarized in 
Table 3. Results are degraded a bit but still holds great importance for 
virtual screening of D:A combinations with reduced ΔVNR. 

In case of descriptors (Set 2a,2b), the best results are obtained by the 
Mordred descriptor dataset with SVR model (r = 0.78) followed by 
RDKit descriptor set with GB model (r = 0.753). While in case of fin-
gerprints (Set 2c-2f), Extended fingerprints (r = 0.728) performed best 
with GB model, followed by Morgan fingerprints (r = 0.714) with ANN 
model. Results of best performing model with only mordred descriptor 
(Set 2b) and only extended fingerprint (Set 2c) is shown in Fig. 9. 

To further investigate the robustness of these ML models, we 
randomly selected 50 polymer donor:non-fullerene acceptor material 
systems from the literature. Data for additional 50 OSCs is reported in 
Table S2 (Supplementary Information). We calculated their %ΔVNR by 
digitizing their reported EQE spectra as mentioned in section 2.1.2.. 
These 50 new D:A combinations in the dataset contain 18 new distinct 
donors and 19 new distinct acceptors. Now the number of distinct do-
nors are 64, number of distinct acceptors are 97, and the total number of 
unique D:A combination becomes 204. For this increased dataset, 

Fig. 7. Machine learning workflow for the prediction of %ΔVNR. Data for 154 unique D:A combination with reported %ΔVNR is collected from the literature, having 
46 distinct donors and 79 distinct acceptors. Reported FMO and Eg values are taken from literature and then transformed by median values for distinct donors and 
acceptors. SMILES code of donor and acceptor molecules are generated by using ChemDraw software. SMILES codes are then used to generate molecular descriptor 
datasets and molecular fingerprint datasets. Finally, the datasets are scaled and fed into ML models for the prediction of %ΔVNR. 

Table 1 
Metrics and their equation used for evaluating the performance of ML models.  

Metric Equation 

Pearson Correlation Coefficient (r) Σ(xi − x)((yi − y))
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Σ(xi − x)2
√

Σ(yi − y)2  

RMSE ̅̅̅
1
n

√
∑n

i=1(yi − xi)
2  

MAPE 1
n
∑n

i=1

⃒
⃒
⃒
⃒
xi − yi

xi

⃒
⃒
⃒
⃒× 100   

P. Malhotra et al.                                                                                                                                                                                                                               



Solar Energy 228 (2021) 175–186

182

similarity scores of donors and acceptors are given in Figure S1 (sup-
plementary information). The distribution of ΔVNR and %ΔVNR is rep-
resented in Figure S2 (supplementary information). 

In the increased dataset (# = 204) results summarized in Table S3 
(supplementary information), approximately equal results are obtained 
for set 3a by SVR model (r = 0.69) and GB model (r = 0.683). Here also, 
results obtained by including descriptors/fingerprints (Set 3b-3 g) are 
far better than electronic descriptors alone (Set 3a). Best results for 
descriptor dataset (Set 3b,3c) is obtained by GB model with RDKit (r =
0.817) followed by SVR model with Mordred (r = 0.798). While in the 
case of fingerprint dataset (Set 3d-3 g), SVR model with PubChem 
provides the best result (r = 0.827) followed by GB model with Extended 
(r = 0.818). Similar to prior cases, SVR model performed well with the 
Mordred descriptor dataset (r = 0.798). The results are summarized in 
Table S3 (supplementary information) and scatter plots of best- 
performing models are shown in Figure S3 (supplementary 
information). 

Again, this increased dataset (# = 204) was used to predict %ΔVNR 
by using only descriptors and only fingerprints. Results are summarized 
in the Table S4 (supplementary information). For the descriptor dataset 

(Set 4a,4b), best results were obtained by SVR model with Mordred (r =
0.773) followed by SVR model with RDKit (r = 0.706). While in case of 
fingerprint dataset (Set 4c-4f), Extended gave approximately equal re-
sults with SVR (r = 0.741) and ANN (r = 0.746) model. Scatter plot of 
best performing models are shown in Figure S4 (supplementary 
information). 

After studying all models, it is important to note that SVR model with 
Mordred descriptors provides the most consistent results in all the 
studies done by us (r ranging from 0.773 to 0.803). Results with SVR 
model shown in Fig. 10 indicates that, SVR is able to understand all the 
complex relations effectively by just using Mordred descriptors. 

7. Conclusion 

In summary, non-radiative voltage losses are one of the major factors 
influencing the VOC of OSCs and limiting PCE. This work has shown how 
ML algorithms can be effectively used to predict %ΔVNR and for virtual 
screenings of potential D/A combinations with reduced %ΔVNR. Using 
electronic descriptors (FMO and Eg) with GB model, correlation coeffi-
cient (r = 0.797) was obtained and the results were significantly 
improved by combination of electronic and structural descriptors with 
GB model (r = 0.859). With only structural descriptors, a good corre-
lation coefficient (r = 0.78) was obtained with SVR model. Structural 

Table 2 
Results for FMO + Eg dataset (Set 1a), FMO + Eg + Descriptor dataset (Set 
1b,1c), and FMO + Eg + Fingerprint dataset (Set 1d-1 g) for prediction of %ΔVNR 
using different ML algorithms. Results are compared based on Pearson r, RMSE, 
and MAPE.   

Metric RF GB SVR ANN 

FMO + Eg (Set 1a) r  0.785  0.797  0.752  0.705 
RMSE  2.857  2.794  3.046  3.297 
MAPE  11.009  11.275  12.512  12.579 

FMO + Eg + RDKit Des (Set 
1b) 

r  0.836  0.859  0.777  0.788 
RMSE  2.568  2.364  2.911  2.884 
MAPE  10.217  9.409  10.766  11.291 

FMO + Eg + Mordred Des (Set 
1c) 

r  0.823  0.85  0.803  0.786 
RMSE  2.671  2.431  2.756  2.942 
MAPE  10.607  9.56  10.946  11.983 

FMO + Eg + Extended FP (Set 
1d) 

r  0.826  0.85  0.761  0.759 
RMSE  2.62  2.428  2.999  3.112 
MAPE  10.353  9.776  11.747  13.618 

FMO + Eg + MACCS FP (Set 
1e) 

r  0.829  0.857  0.807  0.792 
RMSE  2.585  2.371  2.723  2.886 
MAPE  10.207  9.668  10.369  10.717 

FMO + Eg + PubChem FP (Set 
1f) 

r  0.821  0.826  0.789  0.805 
RMSE  2.64  2.601  2.836  2.76 
MAPE  10.635  10.537  10.391  10.373 

FMO + Eg + Morgan FP (Set 1 
g) 

r  0.84  0.83  0.799  0.799 
RMSE  2.515  2.576  2.775  2.828 
MAPE  9.733  10.976  10.458  11.152  

Fig. 8. Reported vs predicted results from GB model. (a) FMO + Eg (r = 0.797), (b) FMO + Eg + RDKit descriptor (r = 0.859) and (c) FMO + Eg + MACCS fingerprint 
(r = 0.857). 

Table 3 
Results for only descriptor datasets (Set 2a,2b) and only fingerprint datasets (2c- 
2f) for prediction of %ΔVNR using different ML algorithms. Results are compared 
based on Pearson r, RMSE, and MAPE.   

Metric RF GB SVR ANN 

RDKIT Des (Set 2a) r  0.701  0.753  0.719  0.715 
RMSE  3.311  3.033  3.207  3.397 
MAPE  12.922  11.794  12.332  12.791 

Mordred Des (Set 2b) r  0.72  0.734  0.78  0.731 
RMSE  3.217  3.141  2.899  3.331 
MAPE  12.245  11.693  11.328  12.975 

Extended FP (Set 2c) r  0.688  0.728  0.726  0.727 
RMSE  3.363  3.188  3.196  3.282 
MAPE  12.923  12.392  12.222  14.007 

MACCS FP (Set 2d) r  0.656  0.711  0.685  0.674 
RMSE  3.541  3.294  3.387  3.549 
MAPE  14.164  14.098  13.962  14.738 

PubChem FP (Set 2e) r  0.616  0.64  0.609  0.57 
RMSE  3.693  3.608  3.692  4.028 
MAPE  14.566  14.443  14.487  16.063 

Morgan FP (Set 2f) r  0.705  0.706  0.71  0.714 
RMSE  3.275  3.312  3.251  3.325 
MAPE  12.411  12.832  12.387  13.064  

P. Malhotra et al.                                                                                                                                                                                                                               



Solar Energy 228 (2021) 175–186

183

Fig. 9. Reported vs Predicted results for only (a) Mordred descriptor with SVR model (r = 0.78), (b) Extended Fingerprint with GB model (r = 0.728).  

Fig. 10. SVR model showing consistent results with (a) FMO + Eg + Mordred (154 datapoints) (r = 0.803), (b) Only Mordred (154 datapoints) (r = 0.78), (c) (# =
204) FMO + Eg + Mordred (r = 0.798) and (d) (# = 204) Only Mordred (r = 0.773). 
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descriptors contain all the hidden information that is encoded within the 
chemical structures of donor and acceptor molecules. ML model with 
only structural descriptors can shortlist compounds with low non- 
radiative loss from a pool of compounds, thereby saving the time as 
well as cost for developing high-performing materials. To further 
investigate the robustness of these ML models, we randomly selected 50 
polymer donor:non-fullerene acceptor material systems from the liter-
ature and again obtained impressive results using a combination of 
electronic and structural descriptors (r = 0.827) and only structural 
descriptors (r = 0.773). SVR model obtained most consistent results with 
the Mordred dataset (r ranging from 0.773 to 0.803). Small dataset 
limits the ML potential as the chemical space understood by ML models 
is pretty less. A much larger dataset is required to understand the 
complex relationship between structural modification of molecules and 
their photovoltaic properties. The results reported in this work has open 
up an opportunity toward even precise ML models predicting the per-
formance of OSCs. 
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